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Abstract—A random system is the mathematical object captur-
ing the notion of a (probabilistic) interactive system that replies to
every input Xi (i = 1, 2, . . .) with an output Yi. A distinguisher D
for two systems S and T can adaptively generate inputs, receives
the corresponding outputs, and after some number q of inputs
guesses which system it is talking to, S or T. Two systems are
indistinguishable if for all distinguishers (in a certain class) the
distinguishing advantage is very small.

Indistinguishability proofs are of great importance because
many security proofs in cryptography amount to the proof that
two appropriately defined systems (sometimes called a real and
an ideal system) are indistinguishable. In this paper we provide
a general technique for proving the indistinguishability of two
systems making use of the concept of conditional equivalence of
systems.

I. INTRODUCTION

Discrete systems are of crucial importance in cryptography.
Many cryptographic concepts (e.g. an encryption scheme, a
message authentication scheme, etc.) can be described as a
discrete system that takes a sequence of inputs (e.g. messages)
and for each input generates an output (e.g. a ciphertext).

The security of a cryptographic system is often defined via
the indistinguishability of two discrete systems. For example,
a so-called block cipher is an encryption scheme that encrypts
a plaintext block (of a certain bit-length), using a secret key, to
a ciphertext block of the same length. The strongest security
definition for a block cipher is that, without knowledge of
the secret key, it is indistinguishable from a uniform bijective
random function, a so-called uniform random permutation
(URP). By indistinguishable one means that any feasible (often
formalized as polynomial-time) algorithm can achieve at most
a negligible distinguishing advantage, where negligible is also
appropriately defined.

Indistinguishability proofs are of crucial importance in cryp-
tography; they are at the core of many cryptographic security
proofs. In this paper we propose a very general technique for
proving indistinguishability. Many known (and new) results on
indistinguishability can be obtained as simple applications of
Theorem 3. Due to space limitations we only give one short
application, the proof of the well-known so-called PRP-PRF
switching lemma, whose previous proofs were substantially
more involved.

The paper makes use of the random systems framework
of [2] (see also [3]). Theorem 3 was already mentioned without

proof in [2].

II. DISCRETE INTERACTIVE SYSTEMS

Definition 1. An (X ,Y)-system takes inputs X1, X2, . . . (from
some alphabet X ) and generates, for each new input Xi, an
output Yi (from some alphabet Y).1 The output Yi depends
(possibly probabilistically) on the current input Xi and on the
internal state.

Example 1. A (uniform) random function (URF) from some
domain X to some finite range Y (typically X = {0, 1}m

for some m or X = {0, 1}∗, and Y = {0, 1}n for some
n) is an (X ,Y)-system that replies to every query Xi with
a uniformly random value Yi ∈ Y , but it replies consistently
when a previous input is repeated, i.e., Xi = Xj =⇒ Yi = Yj .
A URF can either be thought of as being generated on the
fly, as just described, or if |X | is finite it can be thought of
as consisting of a randomly selected function table X → Y
embedded in the system.

A (uniform) random permutation (URP) for domain X is a
uniform random bijective function X → X .

Definition 2. Consider two (X ,Y)-systems S and T. For an
operation ? on Y (typically the operation ⊕ on {0, 1}n) the
system S ? T is the (X ,Y)-systems where the input is given
to both S and T and their outputs are combined using ? to
obtain the output of S ? T.

III. THE INPUT-OUTPUT BEHAVIOR OF DISCRETE
SYSTEMS

A. Describing the Behavior
The input-output behavior2 of an (X ,Y)-system S is char-

acterized completely by the sequence

pS
Y i|Xi for i ≥ 1

1It is not a relevant restriction to consider fixed input and output alphabets.
This allows to model also systems where inputs and outputs come from
different alphabets for different i.

2All statements about systems we are interested in, like the maximal
distinguishing advantage of two systems, depend only on the observable
input-output behavior of the system. The internals of a system (e.g. the
state) are irrelevant if they can never be observed. Two systems with the
same input-output behavior are equivalent in the sense that, if plugged into
any environment (e.g. any application), they will behave identically. Hence
replacing a system by an equivalent system has no effect in the environment.
Therefore the particular language for describing systems (e.g. by pseudo-code)
is irrelevant, as long as the behavior is fully specified by the description.
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of conditional probability distributions.3

Note that the conditional distribution pS
Y i|Xi implies the

conditional distributions pS
Y j |Xj for all j < i, and hence

the above description of the behavior of a system is re-
dundant. The conditional distributions pS

Y i|Xi must satisfy a
consistency condition which ensures that Yi does not depend
on Xi+1, Xi+2, . . .. We discuss this condition below in Sec-
tion III-C. But if we describe a system S by its distributions
pS

Y i|Xi , the consistency condition is of course automatically
satisfied. A system answering only a certain number (say n)
of queries is completely characterized by pS

Y n|Xn .

Example 2. A Y-beacon, often denoted as B, is a system
which outputs a new independent and uniformly distributed
(over Y) output Yi for every new input Xi. The input alphabet
X and the choice of an input are not relevant. In other words,

pB
Y i|Xi(yi, xi) = 1/|Y|i

for all yi and for all xi. A beacon for X = {0, 1}m and
Y − {0, 1}n is denoted as Bm,n.

B. Equivalence of Systems

Definition 3. Two systems S and T are equivalent, denoted

S ≡ T,

if they have the same behavior, i.e., if for all i ≥ 1

pS
Y i|Xi = pT

Y i|Xi .

Example 3. If B′ is a Y-beacon (i.e., B′ ≡ B) and S is any
system for the same Y = {0, 1}n, then the system B′ ⊕ S
resulting by feeding an input to both B and S and XORing
the outputs (see Definition 2) satisfies

B′ ⊕ S ≡ B.

Similarly, If R′ is a URF (i.e., R′ ≡ R) and S is any random
function, then R′ ⊕ S ≡ R.

C. Definition of the Behavior of a System, Random Systems

We can define the following conditional distributions:

pS
Yi|XiY i−1(yi, x

i, yi−1) =
pS

Y i|Xi(yi, xi)

pS
Y i−1|Xi−1(yi−1, xi−1)

.

This sequence of conditional distributions is the minimal,
redundancy-free description of the behavior of an (X ,Y)-
system S.4 In other words, every such sequence corresponds
to the behavior of a system, and two different such sequences
correspond to different systems.

3As usual, we denote probabilities and conditional probabilities in a random
experiment by P, but in contrast, conditional probability distributions defined
in isolation (without a random experiment being defined) are denoted by the
small letter p. Note that pS

Y i|Xi is not a conditional distribution in a random
experiment because the distribution of Xi is not defined.

4The consistency condition for the conditional distributions pS
Y i|Xi is that

pS
Yi|XiY i−1 defined above is indeed a conditional probability distribution,

for all i.

For a system S we define the mathematical type of the
input-output behavior of a discrete system and call it a random
system. As already mentioned, for an (X ,Y)-system, every
output Yi depends (at most) on X1, . . . , Xi and Y1, . . . , Yi−1.

Definition 4. The behavior of an (X ,Y)-system S is a (pos-
sibly infinite) sequence of conditional probability distributions
pS

Yi|XiY i−1 for i ≥ 1.5

Note that two systems are equivalent if and only if they
have the same behavior. The behavior of a system defines an
equivalence class of systems (with the same behavior). The
behavior is a valid (canonical) description of a system.

Definition 5. The system S defined by a behavior pS
Yi|XiY i−1

for i ≥ 1 is called the corresponding (X ,Y)-random system.

For a system S, the behavior description of the redundant
form pS

Y i|Xi is usually easier to work with than the form
pS

Yj |XjY j−1 . We discuss two examples of system behavior.

Example 4. For a Y-beacon we have pB
Yi|XiY i−1 = 1/|Y| for

all choices of the arguments.

Example 5. For a URF R we have

pR
Yi|XiY i−1(yi, x

i, yi−1)

=

 1 if xi = xj for some j < i and yi = yj

0 if xi = xj for some j < i and yi 6= yj

1/|Y| else.

pR
Yi|XiY i−1(yi, x

i, yi−1) is undefined if xj = xk and yj 6= yk

for some j < k < i.

IV. DISTINGUISHERS FOR (X ,Y)-SYSTEMS

Consider the problem of distinguishing two (X ,Y)-systems
S and T by means of a (possibly probabilistic) adaptive
distinguisher D asking at most q queries, for some q. Such a
D generates X1 as an input to S (or T), receives the output
Y1, then generates X2, receives Y2, etc. Finally, after receiving
Yq, it outputs a binary decision bit.

Definition 6. A distinguisher D for (X ,Y)-systems is a
system that behaves like a (Y,X )-system that generates its
first output X1 before receiving the first input Y1, and which
outputs a bit Z (at a separate interface) after a certain number
q of queries. More precisely, the behavior of a distinguisher
is described by the conditional distributions pD

Xi|Y i−1Xi−1 for
all i, as well as the conditional distribution pD

Z|XqY q .

Definition 7. A distinguisher D is non-adaptive if it ig-
nores the outputs of the system it is connected to, i.e., if
pD

Xi|Y i−1Xi−1 = pD
Xi|Xi−1 for i ≥ 1. By NA we denote the

5Recall that such a conditional probability distribution is a function Y ×
X i ×Yi−1 → R+ such that for all choices of the arguments xi and yi−1,
the sum of the function values over the choices yi equals 1. Note also that for
arguments xi and yi−1 such that pS

Y i−1|Xi (y
i−1, xi) = 0, pS

Yi|XiY i−1

need not be defined.
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class of computationally unbounded non-adaptive distinguish-
ers. For a distinguisher D (for (X ,Y)-systems) and an (X ,Y)-
system T we denote by [[DT]] the non-adaptive distinguisher
for (X ,Y)-systems that generates Xq by interacting with T
to generate a transcript (Xq, Y q), ignoring Y q (see Figure 1).

When a distinguisher D is connected to a system S,
resulting in the system DS, this defines a random experiment.
The probabilities of an event E in this experiment will be
denoted as PDS(E). The probability distribution PDS

XqY q of
the transcript (Xq, Y q) can be expressed as

PDS
XqY q (xq, yq)

=
q∏

i=1

pD
Xi|Xi−1Y i−1(xi, x

i−1, yi−1) · pS
Yi|XiY i−1(yi, x

i, yi−1)

= pD
Xq|Y q−1(xq, yq−1) · pS

Y q|Xq (yq, xq) , (1)

where we have made use of

pS
Y q|Xq (yq, xq) =

q∏
i=1

pS
Yi|XiY i−1(yi, x

i, yi−1)

(and similarly for D).6

Definition 8. The advantage of distinguisher D for random
systems S and T, for q queries, denoted ∆D

q (S,T), is defined
as

∆D
q (S,T) :=

∣∣PDS(Z = 1)− PDT(Z = 1)
∣∣ .

For a class D of distinguishers, the advantage of the best D
in D, asking at most q queries, is denoted as

∆D
q (S,T) := sup

D∈D
∆D

q (S,T).

For the class of all distinguishers asking at most q queries we
simply write ∆q(S,T) := supD ∆D

q (S,T).

V. GAMES AND GAME-WINNING

A. The Game Concept

An important paradigm in certain security definitions is the
notion of winning a game (see [3]). A game is an interactive
process where the goal is to reach a particular final state which
one could call the win state. Here we consider games played
by a single entity7, namely the (hypothetical) adversary or
the attacker. The security of certain cryptographic schemes
is defined as a game, and the definition states that it is
infeasible or otherwise impossible to win the game, except
with negligible probability.

Example 6. The security of a message authentication code
(MAC) can be phrased as a game. A MAC for key space K
and with n-bit output is a function

m : {0, 1}∗ ×K → {0, 1}n.

6Note that the conditional distribution pS
Y q|Xq (yq , xq) describes the

behavior of S for any input sequence xq , but the actual conditional probability
distribution PDS

Y q|Xq in the random experiment with D and S is not equal
to pS

Y q|Xq , as the reader can easily verify. This is one of the reasons for
distinguishing between p and P.

7In the context of games this is sometimes called a solitary game.

Let K ∈ K be a uniformly chosen secret key. In the attack
game an adversary can choose arbitrary messages x ∈ {0, 1}∗
and obtain m(x,K). He can also ask verification queries: For
x ∈ {0, 1}∗ and y ∈ {0, 1}n, is m(x,K) = y? The adversary
wins the game if he produces a fresh message x ∈ {0, 1}∗ and
a value y ∈ {0, 1}n such that m(x,K) = y. A MAC function
m is secure if no efficient adversary can win this game with
non-negligible probability.

B. Games as Systems

Without loss of generality, a game with one player (e.g.
the adversary) can be described as an (X ,Y)-system which
interacts with its environment by taking inputs X1, X2, . . .
(considered as moves) and answering with outputs Y1, Y2, . . ..
In addition, after every input it also outputs a bit indicating
whether the game has been won. This bit is monotone in the
sense that it is initially set to 0 and that, once it has turned to 1
(the game is won), it can not turn back to 0 (even if playing the
game were continued). This motivates the following definition.

Definition 9. For a (X ,Y × {0, 1})-system S the binary
component Ai of the output (Yi, Ai) is called a monotone
binary output (MBO) if Ai = 1 implies Aj = 1 for j ≥ i.
Such a system S with MBO is also called a game.

A system W (which could be called “game winner”)
interacting with S, trying to win the game defined by S, is like
a distinguisher, except that it need not have a binary output.
Whether W “sees” the MBO or not is irrelevant if its only
goal is to win the game. The MBO of S can be thought of as
being output at a second interface not accessible to W.

Definition 10. For a (X ,Y×{0, 1})-random system S with an
MBO (called Ai) and for a system W, we denote with ΓW

q (S)
the probability that W wins the game within q queries:8

ΓW
q (S) := PWS(Aq = 1).

For a class W of distinguishers, the winning probability of the
best W in W is denoted as

ΓW(S) := sup
W∈W

ΓW(S).

For the class of all distinguishers asking at most q queries we
simply write Γq(S).

C. Characterizing the Behavior of Games

Since we are only interested in how the game can be won
(but not what happens afterwards), a game S is characterized
completely by the sequence

pS
Yi,Ai=0|XiY i−1,Ai−1=0 for i ≥ 1 (2)

of conditional probability distributions, where A0, A1, A2 . . .
is the sequence of MBOs. This also defines the conditional
distributions

pS
Ai=1|XiY i−1,Ai−1=0 for i ≥ 1.

8The notation PWS stands for the random experiment consisting of
choosing W and S independently and letting them interact.
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Note that pS
YiAi|XiY i−1,Ai−1=1 is not relevant (and in some

contexts may not even be defined). Equivalently to (2), the
behavior of a game is also characterized by

pS
Y i,Ai=0|Xi for i ≥ 1.

D. Distinguisher Connected to a Game

If a distinguisher (or game winner) D for (X ,Y)-systems
is connected to a game S, resulting in the system DS, then
the joint probability distribution of the transcript (Xq, Y q) and
the event “game not won” is given by

PDS
XqY q,Aq=0(x

q, yq) =

=
q∏

i=1

(
pD

Xi|Xi−1Y i−1(xi, x
i−1, yi−1)

· pS
Yi,Ai=0|XiY i−1,Ai−1=0(yi, x

i, yi−1)
)

= pD
Xq|Y q−1(xq, yq−1) · pS

Y q,Aq=0|Xq (yq, xq), (3)

and the probability that the game is won within q queries is

ΓD
q (S) = PDS(Aq = 1)

= 1− PDS(Aq = 0)

= 1−
∑

xq∈X q

∑
yq∈Yq

PDS
XqY q,Aq=0(x

q, yq). (4)

E. Game Equivalence

The following definition captures a restricted type of equiv-
alence of games, capturing only that they behave equivalently
as long as the game is not won. One could capture this
by defining a restricted system which blinds its Y-output as
soon as the MBO is 1. Two systems are equivalent as games
if their restricted versions are equivalent (as systems). The
following definition is an alternative (and more directly useful)
formulation of this concept.

Definition 11. Two (X ,Y × {0, 1})-systems with MBO, S
and T, are equivalent as games, denoted S

g
≡ T, if, for i ≥ 1,

pS
Y i,Ai=0|Xi = pT

Y i,Ai=0|Xi .

If S and T are equivalent as games, it follows from (3) that
the probability of any event defined on the transcript (Xq, Y q)
of D with S (or with T), which includes the event Aq = 0,
is the same for S and T. In particular, we have

PDS(Aq = 0) = PDT(Aq = 0)

and hence, using (4):

Lemma 1. If S
g
≡ T, then, for any distinguisher D for (X ,Y)-

systems and any q,

ΓD
q (S) = ΓD

q (T).

Proof. According to (4), the term ΓD
q (S) is computed as 1

minus the sum of |X |q|Y|q terms, each of which, according
to (3), is identical in the two random experiments (since
pS

Y q,Aq=0|Xq = pT
Y q,Aq=0|Xq , see Definition 11).

VI. INDISTINGUISHABILITY PROOFS

A. Relating Game Winning and Distinguishing

For a game it is useful to define the system when the MBO
is ignored:

Definition 12. For an (X ,Y×{0, 1})-system S with MBO we
define S− as the (X ,Y)-system resulting from S by ignoring
the MBO, i.e.,

pS−

Y i|Xi = pS
Y i|Xi .

The following lemma was stated in [3] and in an equivalent
but slightly different form in [2]. It implies the so-called
“fundamental lemma of game playing” of [1] which is stated
(and proved) only for a specific type of system description.

Lemma 2. If S
g
≡ T, then, for any distinguisher D and any

q,
∆D

q (S−,T−) ≤ ΓD
q (S).

B. Conditional Equivalence

The following notion will lead to a very powerful tool for
proving the indistinguishability of systems.

Definition 13. For an (X ,Y) × {0, 1}-system S with MBO
A0, A1, A2 . . ., let A denote the sequence of events that the
game is not won (i.e., Ai = 0 for i ≥ 0). For an (X ,Y)-
system T we say that S conditioned on A is equivalent to T
(or S while not won is equivalent to T), denoted

S|A ≡ T,

if, for i ≥ 1,9

pS
Y i|Xi,Ai=0 = pT

Y i|Xi .

Since pS
Y i,Ai=0|Xi = pS

Ai=0|Xi · pS
Y i|Xi,Ai=0, the above

condition is equivalent to

pS
Y i,Ai=0|Xi = pS

Ai=0|Xi · pT
Y i|Xi .

Example 7. Let A0, A1, A2 . . . be the MBO (defined for any
system) defined by Ai = 0 if and only if the first i inputs are
distinct. Then for all m and n we have

Rm,n|A ≡ Bm,n.

Stated informally, a URF Rm,n behaves like a beacon Bm,n

as long as the inputs are distinct.

Example 8. Consider a URF Rn,n and a URP Pn, and let
A0, A1, A2 . . . be the MBO defined as follows: Ai = 0 if
and only if for any two distinct inputs the corresponding two
outputs are distinct. (In particular, if all inputs are distinct,
then all outputs are distinct.) We have

Rn,n|A ≡ Pn

as the reader can easily verify. Stated informally, a URF Rn,n

behaves like a URP Pn as long as the outputs are distinct
(whenever the inputs are distinct).

9Two conditional probability distributions are considered to be equal if
they are equal for all arguments for which they are both defined. (Here one
considers only xi for which Ai has non-zero probability.)

2013 IEEE International Symposium on Information Theory

3153



T̂

D T

Ŝ

Z

Xi

Yi

Ai

Fig. 1. The system T̂ and the distinguisher D connected to it.

C. From Conditional Equivalence to Indistinguishability

Often one considers an (X ,Y)-system S for which one
can define an MBO A0, A1, A2 . . .. This results in a game
Ŝ, characterized by pŜ

Y iAi|Xi , where, by definition,

Ŝ− ≡ S,

i.e., pŜ−

Y i|Xi = pS
Y i|Xi .

The following theorem is very useful for indistinguishability
proofs. It states that if Ŝ|A ≡ T, then the optimal distin-
guishing advantage for S and T (within q queries) can be
bounded by the optimal probability of winning the game S
non-adaptively (within q queries). Recall the definition of the
non-adaptive distinguisher [[DT]] (see Definition 7).

Theorem 3. If for an (X ,Y)-system S one can define an MBO
A0, A1, A2 . . ., such that Ŝ|A ≡ T, then, for every D,

∆D
q (S,T) ≤ Γ[[DT]]

q (Ŝ).

In particular,
∆q(S,T) ≤ ΓNA

q (Ŝ).

Proof. One can enhance T with an MBO A0, A1, A2 . . . to a
game T̂, as follows (see Figure 1):

pT̂
Y iAi|Xi = pT

Y i|Xi · pŜ
Ai|Xi

(i.e., pT̂
Ai|XiY i = pŜ

Ai|Xi). Then

Ŝ
g
≡ T̂

since

pŜ
Y i,Ai=0|Xi = pŜ

Ai=0|Xi︸ ︷︷ ︸
=pT̂

Ai=0|Xi

· pŜ
Y i|Xi,Ai=0︸ ︷︷ ︸

=pT
Y i|Xi=pT̂

Y i|Xi

= pT̂
Y i,Ai=0|Xi .

(Note also that pT̂
Y i|Xi = pT̂

Y i|Xi,Ai=0.) Consider a distin-
guisher D. According to Lemma 2, and using Ŝ− ≡ S and
T̂− ≡ T, we have

∆D
q (S,T) = ∆D

q (Ŝ−, T̂−) ≤ ΓD
q (Ŝ).

Since, according to Lemma 1, ΓD
q (Ŝ) = ΓD

q (T̂), it suffices
to analyze ΓD

q (T̂). The way T̂ is defined (namely, as T

enhanced with an independent system Ŝ generating an MBO
from the inputs X1, X2, . . .), the distinguisher D together
with T can be seen as a non-adaptive distinguisher or game
winner [[DT]] (see Definition 7) driving the system pŜ

Ai|Xi ,
ignoring the outputs of the system Ŝ. More precisely, we have
[[DT]]Ŝ ≡ DT̂ (see Figure 1) and hence ΓD

q (T̂) = Γ[[DT]]
q (Ŝ).

The claim ∆q(S,T) ≤ ΓNA
q (Ŝ) follows since [[DT]] ∈ NA

for any D.

D. Example: The URP-URF “Switching Lemma”

We discuss a simple result which is usually called the
PRP-PRF “switching lemma”, where PRF (PRP) stands for
pseudo-random function (permutation). But it is independent
of complexity-theoretic arguments and is simply the statement
that a URP Pn is indistinguishable from a URF Rn,n unless
the number of queries is close to 2n/2, which is exponential
and generally infeasible. This means that whenever one needs
a pseudo-random function (PRF) one can also use a pseudo-
random permutation (PRP) without losing much security.
Since a block cipher (like AES) is often assumed to be a
PRP, it can also be used as a PRF, as is for instance the case
in the CBC-MAC.

The probability that a set of q independent and uniformly
chosen values from an alphabet of size t contains a value twice
(a collision) is denoted as pcoll(t, q). It is well-known that

pcoll(t, q) ≤ 1
2q2/t.

Theorem 4. ∆q(Rn,n,Pn) ≤ 1
2q22−n.

Proof. As shown in Example 8, we can define an MBO
A0, A1, A2, . . . for the system Rn,n, resulting in the game
R̂n,n, where the MBO is 1 if and only if for some distinct in-
puts the outputs are equal (a collision). We have Rn,n|A ≡ Pn

(see Example 8) and hence, according to Theorem 3, we obtain

∆q(Rn,n,Pn) ≤ ΓNA
q (R̂n,n).

It remains to analyze ΓNA
q (R̂n,n). An optimal non-adaptive

strategy chooses q distinct inputs. The probability of causing
a collision is pcoll(2n, q), hence Lemma 2 can be applied.
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