The Role of Cryptography in Database Security

Ueli Maurer
Department of Computer Science
ETH Zurich
CH-8092 Zurich, Switzerland

maurer@inf.ethz.ch

ABSTRACT

In traditional database security research, the database is
usually assumed to be trustworthy. Under this assump-
tion, the goal is to achieve security against external attacks
(e.g. from hackers) and possibly also against users trying
to obtain information beyond their privileges, for instance
by some type of statistical inference. However, for many
database applications such as health information systems
there exist conflicting interests of the database owner and
the users or organizations interacting with the database, and
also between the users. Therefore the database cannot nec-
essarily be assumed to be fully trusted.

In this extended abstract we address the problem of defin-
ing and achieving security in a context where the database
is not fully trusted, i.e., when the users must be protected
against a potentially malicious database. Moreover, we ad-
dress the problem of the secure aggregation of databases
owned by mutually mistrusting organizations, for example
by competing companies.

1. INTRODUCTION
1.1 Scope of this Article

Classical database security (e.g. see [3]) relies on many
different mechanisms and techniques, including access con-
trol, information flow control, operating system and network
security, prevention of statistical inference, data and user au-
thentication, encryption, time-stamping, digital signatures,
and other cryptographic mechanisms and protocols.

It seems desirable to develop a systematic understand-
ing of database security problems and their solutions and
to come up with a framework. Ideally, such a framework
should give some assurance that all relevant security prob-
lems have been addressed, and it can possibly point out new
security issues not previously considered. It is a goal of this
extended abstract and the corresponding talk to contribute
to developing such a framework and identifying new research
directions for fruitful collaborations of the database, the in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

formation security, and the cryptography research commu-
nities."

A major aspect that requires closer examination, and which
has partially been addressed in research directions like pri-
vate information retrieval (PIR) [4], is to reduce the required
level of trust into the database.

1.2 Limitations of Scope

The treatment in this paper is at a quite abstract level,
without explaining how concrete techniques and protocols
work. Some solutions proposed in this paper are of a theo-
retical nature and can become practical only when the com-
puting power and communication bandwidth, or the tech-
niques themselves, have been substantially improved. More-
over, the solutions and protocols are described in an ideal-
ized setting with synchronous communication channels. In
a real-world setting such an assumption may not be fully
justified, and the protocols addressing this issue are even
more complex.

1.3 Outline

In Section 2 we briefly discuss information security from
a very high-level perspective and compare the design of se-
cure systems with the design of correct systems. We also
distinguish between unilateral and multilateral security. In
Sections 3 and 4 we discuss unilateral database security,
first assuming the database, then the user to be trustwor-
thy, where protection must be achieved against the other
party’s potential cheating. In Section 2 we sketch the bi-
lateral security problem where both the database must be
protected against malicious users, and vice versa. A general
paradigm for building multilaterally secure systems, called
secure multi-party computation, is reviewed in Section 6.
Section 7 briefly discusses the secure aggregation of several
databases as an application of secure multi-party computa-
tion.

2. INFORMATION SECURITY

One of the main paradigm shifts of the emerging infor-
mation society is that information is becoming a crucial if
not the most important resource. Information differs radi-
cally from other resources; for instance and it can be copied
without cost, it can be erased without leaving traces. Pro-

not made or distributed for profit or commercial advantage and that copies tecting the new resource information is a major issue in the
bear this notice and the full citation on the first page. To copy otherwise, to information economy.

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
SIGMOD 2004, June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/0655.00.

!We use the term “database” in the most general sense, in-
cluding more general information systems than simple tra-
ditional databases.

Information security has proven to be a notoriously diffi-
cult topic. To understand and define security one must have
a clear understanding of what a system is supposed to ac-
complish and in which ways a potential attacker can try to
prevent the system from operating correctly. In this section
we address these issues at a very general level. It serves as
a basis to address database security in the later sections.

2.1 Unilateral Security

In many security-relevant applications, security is seen as
a unilateral problem: Some system (or entity, or collection
of entities) must be protected against a malicious outsider,
often called an attacker. The system is secure if no attacker
(with certain capabilities) can cause any (significant) devi-
ation of the system from the specified behavior. This in-
cludes, for example, that the attacker cannot extract secret
information.

In order to define security, one must hence define the sys-
tem specification, i.e., what the system is supposed to do
under normal circumstances, as well as the adversary’s ca-
pabilities. Such a specification of capabilities can include
the available computing power, access to side information,
etc.

Typical examples of unilateral security problems are the
protection of a computer system by security mechanisms of
the operating system, as well as the protection of an orga-
nization’s internal network against hackers, for instance by
firewalls and intrusion detection technology.

Another, perhaps less obvious example of unilateral se-
curity is the protection of the communication between two
parties against an eavesdropper, for example by encryption.
Although both parties must be protected, the situation is
nevertheless a unilateral one because the required protection
of the two parties is (jointly) against an external eavesdrop-
per, not against each other.

Database security is often seen as a unilateral security
problem: The database system must be protected against
outsiders and possibly also against potentially malicious users,
but is itself assumed to be trustworthy.?

2.2 Multilateral Security

In contrast to unilateral security, many security-relevant
applications require the protection of several parties, each
against the potential misbehavior of some other parties, pos-
sibly against all other parties.

A simple example of bilateral security are on-line trans-
actions where both the customer and the vendor want to
be protected against malicious behavior by the other. In
practice, such bilateral security issues are often not really
addressed and instead “solved” by assuming that one of the
parties (e.g. the vendor) is trustworthy.

Another such example, which needs some more explana-
tion, is the classical software piracy problem. The software
vendor has developed some useful functionality (e.g. a col-
lection of statistical tools), while the customer wants to ap-
ply the functionality to his data. The (idealized) specifica-
tion is that a customer who pays is allowed to use the func-
tionality. This specification is implemented by the vendor
by encoding the functionality in a software package, sending
the software to the customer, and the customer running the

2Note that one need not distinguish between users and out-
siders. The outsider could be defined as a user with no
privileges.

software on his machine. However, this achieves more than
the specification, in an undesirable way: The user cannot
only apply the functionality to his data, he can pass this ca-
pability on to other parties (software piracy). This problem
is sometimes addressed by extra hardware mechanisms, but
usually it is addressed only by legal deterrence, which means
that from a purely technical viewpoint (which we take in this
paper) the user is assumed to be trusted.

There is a dual (for now quite theoretical) solution to this
problem. Instead of having the vendor send the software to
the user, the user could send his data to the vendor for pro-
cessing. More precisely, the vendor could run a web-service
which manages, stores, and processes a customer’s data. In
this case, the customer need not receive the software but
must of course fully trust the service provider.

Ideally, one would like to solve the software piracy prob-
lem in a fair and symmetric manner such that neither the
vendor must send the software to the user nor must the user
send the data to the vendor. This is a typical example of
a specification which could easily be solved if a mutually
trusted party were available. This party could obtain the
software and the user’s data and perform all operations for
the user, giving only him access to the result of the com-
putation. We will discuss in Section 6 that many security
solutions can be seen as the simulation of a virtual trusted
party by the actual involved parties.

Another example of multi-lateral security, involving three
entities, are on-line auctions. The auctioneer, the bidder,
and the party offering an object need to be protected against
possible fraud by another party (and, of course, also against
external attackers). An even higher level of security is ach-
ieved if each party is protected against the other two parties
cheating collectively with a joint strategy.

Yet another example of multilateral security is e-voting
discussed below.

2.3 Defining Security

As mentioned above, in order to define security one must
define the system specification, i.e., what the system is sup-
posed to do under normal circumstances, as well as the ad-
versary’s capabilities. But how should one model the ad-
versary if one wants to achieve security simultaneously for
different groups of potential cheaters?

Let us address the system specification first. In the above
software example, the specification is simply that the user
should obtain the result of applying the software to his data.
However, both discussed implementations achieve more, ac-
tually too much from a security point of view. The speci-
fication can be seen as an idealized system which performs
exactly (and only) the desired operations.

As another example, a secure communication channel is
an idealized system with three parties, the sender, the re-
ceiver, and the eavesdropper. The specification is such that
the sender can choose a message, the receiver gets it, and
the eavesdropper gets nothing. Encryption is a secure im-
plementation of this specification if one can argue that the
ciphertext seen by the eavesdropper gives no information (in
a computational sense) about the message.

For e-voting the specification is that each voter can choose
his vote and that all voters should learn the correct outcome
of the vote evaluated according to the rules. The fact that
votes need to be communicated is not part of the actual
specification, but of course some form of communication is

unavoidable. Like many other specifications, the e-voting
specification can be easily implemented using a trusted party
(the voting authority) who receives (securely) all votes from
the voters, counts them, and announces the result. But it
is doubtful whether in practice such a trusted system, se-
cure beyond any doubt (also in case of a highly unexpected
outcome), can be implemented. Secure multi-party com-
putation discussed in Section 6 allows to simulate such a
trusted party.

In a general setting with a set P of parties, the security
requirements must specify for which sets S C P of parties
their collective cheating must be tolerated, meaning that
for the remaining parties (P \ S) the specification is still
achieved. A security requirement involves a whole collection
A = {51,S52,...,Sk} of such sets, which typically overlap.
In case of unilateral security, where a system S must be
protected, S is not contained in any of the S;. In a sense,
unilateral security can be seen as a setting where the union
of the sets in A is strictly smaller than the complete set P
of parties.

One can model such a security requirement by assuming a
central adversary who can choose one set S € A and corrupt
the players in that set, where corruption means that the
adversary takes full control of these players. Security means
that for the remaining parties there is no essential difference
whether or not the adversary is present. More precisely, for
any set S € A corrupted by the adversary, the security for
the remaining parties is guaranteed. To make this more
formal is beyond the scope of this extended abstract.

When there are many parties (say n), a typical setting is
that one wants to tolerate the cheating of any ¢ parties, for
some t < n. In this case, A = {S C P: |S| <t}

2.4 Correctness vs. Unilateral Security

Let us briefly compare the two problems of constructing a
correct system and constructing a (unilaterally) secure sys-
tem to see that correctness and unilateral security are con-
ceptually the same.

A system is a correct implementation of a specification if
it behaves as specified. Correctness is relative to a specifi-
cation defining the desired functionality. Ideally, a specifi-
cation defines all interfaces to the system (i.e. all methods
for interacting with the system) and the complete input-
output behavior (for all possible parameter ranges and for
all possible ways of interacting with the system.)

Similarly, a system is secure if it behaves as specified,
even in presence of an adversary with certain well-defined
capabilities. Like correctness, security is relative to a spec-
ification (which defines what security in the given context
means.) Again, a specification defines all interfaces to the
system (i.e., all methods for interacting with the system)
and the complete input-output behavior. But in contrast to
correctness, one also considers an adversary with a certain
interface to the system, and the specification must be met
for all admissible adversary strategies.

From such a high-level point of view, correctness and uni-
lateral security are essentially the same. In both cases, the
system must behave according to the specification, where in
case of correctness one quantifies over all parameter ranges
etc., and in the case of security one quantifies over all ad-
versary strategies. This is why multilateral security is per-
haps more fascinating (at least as a research topic) and more
paradoxical than unilateral security.

3. UNILATERAL DATABASE SECURITY

As mentioned before, in a traditional model of database
security, the database is (usually implicitly) assumed to be
trustworthy, while outsiders and possibly also the users are
considered to be potentially malicious.

It is unnecessary to give a precise specification of a database
system. It suffices to consider a general system with a state
space ¥ and a set Q of operations (queries). Each query
g € Q is specified by a state update function f; : ¥ — X
and an output function g, : ¥ — B, where B is the range
of all possible replies a query can produce. There is a set U
of users, and each user u € U has certain privileges, i.e., is
allowed to perform a certain subset Q. C Q of queries.® In
this abstract view, also the privilege management subsys-
tem and the logging subsystem are seen as components of
the database. Any query that is logged hence also changes
the state, even if it does not modify actual data.

We briefly discuss the most important security techniques
relevant in a unilateral context. But we point out again
that the unilateral database security problems can be seen
as problems of the correct implementation of a specification
rather than an actual security problem, although this view
is quite unconventional.

3.1 User Authentication and Secure Commu-
nication

The most basic unilateral security problem is to estab-
lish a secure connection between any user and the database.
The term “secure connection” captures both secrecy and au-
thentication of the communication. Also user authentication
can be viewed as being implied by the authentication of the
connection. Of course, a concrete protocol for establishing
a secure connection might involve subprotocols at different
layers of the communication stack, and a user authentication
step may be involved.* If one assumes a public-key infras-
tructure (PKI) to be in place, then establishing secure con-
nections can be achieved by standard cryptographic mech-
anisms and protocols. We refer to [10, 12, 8] for a general
discussion of cryptography.

3.2 System and Network Security

Like any information system, a database system must run
on a clean operating system and trustworthy hardware, and
it must be protected against attacks over the network. But
both these issues, while affecting a database’s security, are
not database security issues and should probably not be con-
sidered as such.

3.3 Access Control

Access control is the most classical database security topic.
The access control system is the database component that
checks all database requests and grants or denies a user’s re-
quest based on his or her privileges. (Here we assume that
the user has been authenticated.)

Research in access control is concerned with developing
policies and languages for specifying privileges, and with

3There are usually different categories of users, including
system administrators, different types of internal users, and
possibly a category of (unspecified) external users with re-
stricted privileges.

4For example, one could establish an SSL connection (with-
out client authentication) between client and server and then
authenticate the user at the application level.

software components implementing a given policy. A sub-
tle aspect of access control is that rights can be seen like
any other data item. This also includes the right to grant
rights, which is potentially recursive. In many commercial
databases, however, access control is quite simple. Access
control can also be content-based, meaning that the decision
is based not only on which data records are requested, but
also based on their content (e.g. based on keywords), or it
can be based on the history of the user’s previous requests.

3.4 Preventing Inference

The access control problem becomes even more subtle
when the possibility of inference is taken into account, i.e.,
if one is concerned that a user might, from a set of legiti-
mate queries, be able to infer further information he is not
supposed to obtain. A well-known example is statistical in-
ference, where several statistical queries can be combined
to obtain information about individual entries, by carefully
specifying the populations for the individual queries.

This problem has no clean solution since it is, ultimately,
an artificial intelligence problem. If one sees access control
as a database specification (not a security) problem, the
inference problem illustrates that a complete specification
of a database’s functionality is highly involved and probably
impossible.

4. UNILATERAL SECURITY FORTHEUSER
4.1 The Problems

Let us first discuss a few examples to see what the users’
concerns might be and why one might want to protect users
from a malicious database.

ExAMPLE 1. Consider a patent database, for example ow-
ned by company A and open to the public. A competing
company B would probably not want company A to learn
which patents company B is searching, as this might leak
information about company B’s projects and strategy.

ExXAMPLE 2. Consider a health information system stor-
ing personal data of users, which is accessible to various
authorized parties (the user, doctors, hospitals, the user’s
health insurance company, the user’s employer, etc.), each
with specified and sufficiently restricted privileges. Users
might have no choice but to join such a system. It is obvi-
ous that the users might be concerned about possible misuse,
for instance when certain information is leaked to the insur-
ance company or to his employer. Ideally, the user would
like to hide the information from the organization running
the database, but it seems that he has no choice but to trust
the database.

ExXAMPLE 3. In the above example, any of the entities
accessing the database might be concerned about the cor-
rectness of the data received from it. It seems that the users
have to trust the database that it answers queries correctly
and that it maintains the database correctly.

4.2 Private Information Retrieval

Let us discuss the problem of hiding the users’ queries
from the database (see Example 1). Private information
retrieval (PIR), proposed in several papers and formalized
in [4], achieves this. This is at first paradoxical, but one triv-
ial (though impractical) solution would be for the database

owner to send the entire database to the user so that the
user could evaluate the query himself (and neglect the rest
of the data). This shows that PIR is possible in principle.

PIR takes place in a setting where the user is trusted, i.e.,
there is no information to be hidden from the user. The goal
of PIR protocols is to reduce the necessary communication.
We do not discuss the known results and protocols.

4.3 Computing with Encrypted Data

Let us now address the problem of keeping the data stored
in the database (not the query) secret.

Encryption is the usual technique used to protect the con-
fidentiality of data. If the users encrypt the information
stored in a database in order to prevent the database from
seeing the data, then the database queries are restricted to
simple storage and retrieval operations, which is not very
useful.

When the database is supposed to answer queries involv-
ing several encrypted fields, it seems that it must decrypt
the data before evaluating the query. However, a technique
called computing with encrypted data allows to solve this
problem. The idea is that every data unit (e.g. every bit) is
stored in encrypted form, where the key is not known to the
database. The database performs the logical bit-operations
specified by the query on the encrypted bits, thereby ob-
taining the encrypted result of the query, which it returns.

Current solutions to this require substantial communica-
tion for every logical gate to be evaluated, but if one could
find a probabilistic bit-encryption scheme that is homomor-
phic with respect to a complete set of logical operations (e.g.
the NAND gate, or the EXOR and the AND gates), then
non-interactive computation with encrypted data would be
possible.®> This remains one of the most intriguing open
problems in cryptography.

By using a universal circuit, which takes a description of
a circuit as input, one could even hide both the query and
the data from the database.

5. BILATERAL DATABASE SECURITY

In this section we consider bilateral security where both
the database must be protected against malicious users and
the users must be protected against a potentially malicious
database.

This can be achieved by so-called secure two-party compu-
tation proposed originally in [13]. This technique allows two
parties to compute any specification, including the specifi-
cation of a user interacting with a database. A typical illus-
trative example is the so-called millionaires’ problem: Two
millionaires want to find out who is richer, without telling
each other how wealthy they are. Using a trusted party, this
task can easily been solved, but using cryptography one can
solve this task even without a trusted party.

Unfortunately, it is impossible to achieve full security for
both parties. Rather, one must assume that each party fol-
lows the protocol and only afterwards may try to find out
more about the other parties inputs and data than provided
by the protocol’s output.® This is for example justified in

5This would also potentially allow to solve the software
piracy problem: The user could send the data in encrypted
form to the software vendor.

5Such restricted type of cheating is often called passive
cheating or semi-honest, in contrast to full-fledged cheating
which is called active cheating.

case of the millionaires’ problem if the two gentlemen hon-
estly and fairly perform a protocol such that neither of them
can (or must) see the other party’s input (i.e., wealth).

Full security against active cheating can be obtained by in-
volving several parties, using a technique called secure multi-
party computation.

6. SECURE MULTI-PARTY COMPUTATION
6.1 The Paradigm

Secure function evaluation, as introduced by Yao [13], al-
lows a set P = {p1,...,pn} of n players to compute an ar-
bitrary agreed function of their private inputs, even if some
of the players deviate arbitrarily from the protocol. More
generally, secure multi-party computation (MPC) allows the
players to perform an arbitrary on-going computation with
new inputs being given into the computation and new out-
puts being generated. This corresponds to the simulation of
a trusted party [6, 7].

Security in MPC means that the players’ inputs remain
secret (except for what is revealed by the intended outputs of
the computation) and that the results of the computation
are guaranteed to be correct. More precisely, security is
defined relative to an ideal-world specification involving a
trusted party: anything the adversary can achieve in the real
world (where the protocol is executed) he can also achieve
in the ideal world [2, 11].

Many distributed cryptographic protocols can be seen as
special cases of a secure MPC. For specific tasks like col-
lective contract signing, on-line auctions, or voting, there
exist very efficient protocols. Here we consider general se-
cure MPC protocols, where general means that any given
specification involving a trusted party can be computed se-
curely without the trusted party. General MPC protocols
tend to be less efficient than special-purpose protocols. We
refer to [9] for a simple explanation of the MPC paradigm.

6.2 Specifying the Adversary’s Capabilities

The potential misbehavior of some of the players is usually
modeled by considering a central adversary with an overall
cheating strategy who can corrupt some of the players. Two
different notions of corruption, passive and active corrup-
tion, are usually considered. Passive corruption means that
the adversary learns the entire internal information of the
corrupted player, but the player continues to perform the
protocol correctly. Active corruption means that the adver-
sary can take full control of the corrupted player and can
make him deviate arbitrarily from the protocol. If no active
corruptions are considered, then the only security issue is
the secrecy of the players’ inputs.

One distinguishes between two types of security. Informa-
tion-theoretic security means that even an adversary with
unrestricted computing power cannot cheat or violate se-
crecy, while cryptographic security relies on an assumed re-
striction on the adversary’s computing power and on certain
unproven assumptions about the hardness of some compu-
tational problem, like factoring large integers.

6.3 Some Known Results

In the original papers solving the general secure MPC
problem, the adversary is specified by a single corruption
type (active or passive) and a threshold ¢ on the toler-
ated number of corrupted players. Goldreich, Micali, and

Wigderson [6] proved that, based on cryptographic intrac-
tability assumptions, general secure MPC is possible if and
only if t < n/2 players are actively corrupted. The threshold
for passive corruption is t < n. (The case n =2 and t = 1
with passive security was already discussed in the context
of the millionaires’ problem.) In the information-theoretic
model, where bilateral secure channels between every pair
of players are assumed, Ben-Or, Goldwasser, and Wigder-
son [1] Chaum, Crépeau, and Damgard [5] proved that per-
fect security is possible if and only if ¢t < n/3 for active
corruption, and if and only if ¢ < n/2 for passive corrup-
tion.

More generally, the adversary’s corruption capability could
be specified by a so-called adversary structure [7], i.e., a set
of potentially corruptible subsets of players.

7. SECUREAGGREGATION OF DATABASES
FROM MUTUALLY MISTRUSTING EN-
VIRONMENTS

Consider, as an example scenario, that it has been agreed
that the National Statistical Office (NSO) of a country should
publish detailed weekly (or even daily) statistics about the
country’s economic situation, involving detailed internal data
of all companies. This requires the cooperation of the com-
panies which must provide their data to the NSO. But this
is in conflict with the companies’ interest to keep such data
confidential, at least until published in an official company
report. If the NSO were fully trusted, this task could easily
be solved in the obvious manner.

One can view the collection of all databases as an aggre-
gated database to which only the NSO has some privileged
access for statistical queries (and not more). This is the
specification that should be implemented. In particular, the
NSO should not learn any individual company data.

Secure multi-party computation allows to solve this prob-
lem, i.e., to implement this specification. Each database
plays the role of a player in a secure MPC protocol. More
generally, one can define arbitrary queries on such a virtually
aggregated database, and they can be evaluated without any
other information leaking from the individual databases.

Acknowledgement

I would like to thank Gerhard Weikum and the program
committee for the invitation to speak at this SIGMOD con-
ference, Martin Hirt, Yuval Ishai, and Renato Renner for
very helpful discussions on database security and related is-
sues, and Christian Konig for his support with preparing
this manuscript.

8. REFERENCES

[1] M. Ben-Or, S. Goldwasser, and A. Wigderson.
Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. 20th
ACM Symposium on the Theory of Computing
(STOC), pp. 1-10, 1988.

[2] R. Canetti. Security and composition of multi-party
cryptographic protocols. Journal of Cryptology, vol.
13, no. 1, pp. 143-202, 2000.

[3] S. Castano, M. Fugini, G. Martella, and P. Samarati,
Database Security, Addison-Wesley, 1995.

[4]

[6]

7]

[10]

[11]

[12]

[13]

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan.
Private information retrieval. In Proc. 36th IEEE
Symp. on Foundations of Computer Science (FOCS),
1995.

D. Chaum, C. Crépeau, and I. Damgard. Multi-party
unconditionally secure protocols. In Proc. 20th ACM
Symposium on the Theory of Computing (STOC), pp.
11-19, 1988.

O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game — a completeness theorem for
protocols with honest majority. In Proc. 19th ACM
Symposium on the Theory of Computing (STOC), pp.
218-229, 1987.

M. Hirt and U. Maurer. Player simulation and general
adversary structures in perfect multi-party
computation. Journal of Cryptology, vol. 13, no. 1, pp.
31-60, 2000.

U. Maurer. Cryptography 2000 + 10. R. Wilhelm
(Ed.), Lecture Notes in Computer Science,
Springer-Verlag, vol. 2000, pp. 63—-85, 2000.

U. Maurer. Secure multi-party computation made
simple. Security in Communication Networks
(SCN’02), G. Persiano (Ed.), Lecture Notes in
Computer Science, Springer-Verlag, vol. 2576,

pp. 14-28, 2003.

A.J. Menezes, P.C. van Oorschot und S.A. Vanstone.
Handbook of Applied Cryptography. Boca Raton: CRC
Press, 1997.

B. Pfitzmann, M. Schunter, and M. Waidner. Secure
Reactive Systems. IBM Research Report RZ 3206,
Feb. 14, 2000.

B. Schneier. Applied Cryptography. Wiley, 2nd edition,
1996.

A. C. Yao. Protocols for secure computations.

Proc. 23rd IEEE Symposium on the Foundations of
Computer Science (FOCS), pp. 160-164. IEEE, 1982.

