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Abstract

By interpreting message authentication as a hypothesis testing problem, this paper provides a generalized treatment of
information-theoretic lower bounds on an opponent’s probability of cheating in one-way message authentication. We
consider the authentication of an arbitrary sequence of messages, using the same secret key shared between sender and
receiver. The adversary tries to deceive the receiver by forging one of the messages in the sequence. The classical two
types of cheating are considered, impersonation and substitution attacks, and lower bounds on the cheating probability
for any authentication system are derived for three types of goals the adversary might wish to achieve. These goals are
(a) that the fraudulent message should be accepted by the receiver, or, in addition, (b) that the adversary wishes to
know or (¢) wants to even choose the value of the plaintext message obtained by the legitimate receiver after decoding
with the secret key.

Keywords. Cryptography, Authentication, Unconditional security, Hypothesis testing, Impersonation attack, Sub-
stitution attack.

I. INTRODUCTION

Message authentication is concerned with providing evidence to the receiver of a message that it
was sent by a specified legitimate sender, even in the presence of an opponent who can intercept
messages sent by the legitimate sender and send a fraudulent message to the receiver. Authenticity
(like confidentiality) can be achieved by cryptographic coding based on a secret key shared by sender
and receiver.

The security of cryptographic systems can be classified according to the assumed computational
resources of an adversary. Security that holds when one assumes a suitable restriction on an adversary’s
computing power is called computational security while security that holds even when no bound on
the adversary’s computing power is assumed is called information-theoretic security.

This paper is concerned with information-theoretically secure message authentication, i.e., we con-
sider a scenario in which the opponent has unlimited computing power and knows everything about
the system, except for the secret key. We consider bounds on how efficiently a secret key shared by
sender and receiver can be used or, more precisely, we derive lower bounds on an opponent’s cheating
probability that no authentication system with a given key size can overcome.

Compared to the theory of secrecy, definitions in authentication theory are more subtle. For instance,
while Shannon’s definition of perfect secrecy [15], which means that ciphertext and plaintext are
statistically independent, is obviously the strongest possible definition of secrecy, it is not clear how
perfect authenticity should be defined; the cheating probability can be made arbitrarily small by using
a secret key of sufficient size, but it can never be reduced to zero. Shannon [15] proved the well-known
result that for any perfect cipher the secret key must be at least as long as the plaintext or, more
precisely, that H(K) > H(M) where M and K denote the message and the secret key, respectively.
We refer to [8] for a generalization of Shannon’s treatment of secrecy.

The first lower bound results in message authentication were purely combinatorial [4], [3]. In 1984,
Simmons [16] initiated a sequence of research activities on information-theoretic lower bounds in au-
thentication theory [2], [5], [6], [7], [10], [11], [12], [13], [14], [17], [18], [19], [21].

The results of this paper were presented in part at the 13th Symposium on Theoretical Aspects of Computer Science (STACS’96),
Grenoble, France, Feb. 1996, and have appeared in the proceedings.
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The goal of this paper is give a generalized and considerably simplified treatment of lower bound
results in authentication theory. The key to this simplification is the natural observation that authen-
tication, i.e. deciding whether a received message is authentic or not, is a hypothesis testing problem.
The receiver is faced with two possible hypotheses: either the message was generated by the legitimate
sender knowing the secret key, or by an opponent without a prior: knowledge of the secret key. The
joint probability distribution of the authenticated message and the secret key is different in both cases,
and this may allow the receiver to distinguish between the two hypotheses. The goal of the paper is
similar in spirit to some of Sgarro’s work (cf. [13], [14]) who also investigated a general approach to
authentication frauds, based on rate-distortion theory, showing that some of the known bounds follow
from a more general result.

Like Shannon’s lower bounds [15] on the size of a secret key of a perfect secrecy system, the bounds
of this paper show the impossibility of obtaining an arbitrary amount of security with a secret key of
fixed size. Constructions of authentication systems are not discussed in this paper, but there exists a
substantial body of literature on that topic.

In Section II we discuss the message authentication problem and various cheating strategies. The
literature is briefly reviewed in Section III, and hypothesis testing is described in Section IV. Lower
bounds on the cheating probability for impersonation and substitution attacks are derived in Sections V
and VI, respectively, and these results are combined in the concluding Section VII.

II. MESSAGE AUTHENTICATION AND CHEATING STRATEGIES

Consider a scenario in which a sender and a receiver share a secret key K. The sender wants to
send a sequence of plaintext messages My, M, ..., M,, at some independent time instances, in an
authenticated manner to the receiver. Each message M; is authenticated separately by sending an
encoded message or ciphertext! C; which depends (possibly probabilistically) on K and M;. In order
to be fully general, and in contrast to the previous literature, we also allow C; to depend on the
previous plaintext messages M, ..., M; ; and the previous ciphertexts Ci,...,C; 1.

Based on C; and K, and possibly also on M;,...,M; ; and C,...,C;_1, the receiver decides to
either reject the ciphertext or accept it as authentic and, in case of acceptance, decodes C; to a message
M;. 1t is assumed that the receiver is synchronized, i.e., he knows the message number . Without
loss of generality we assume that M; is uniquely determined by M, ..., M; 4, Cy,...,C; and K and
hence, by induction, also by C1,...,C; and K alone:

H(M; - M;|C, ---CiK) = 0.

In typical authentication systems, the message M; is often determined by the ciphertext Cj, i.e.,
the system provides no secrecy. In such a system without secrecy we have H(M;|C;) = 0 or, more
generally,

H(M;---M;|Cy---C;) = 0.

Authentication schemes without secrecy are often called Cartesian. Our analysis applies to authenti-
cation codes that do or do not provide secrecy, be it full or partial.

Following standard practice it is assumed that an adversary knows everything about the system,
including the codes used and the plaintext statistics, but that he has no a prior: information about the
secret key. To remove a possible source of confusion it should be pointed out that in the authentication
literature plaintext message and ciphertext are also referred to as source state and message, denoted
by S and M, respectively.

The adversary is assumed to have full (read and write) access to the communication channel. The
adversary’s strategy is to select an arbitrary (e.g. optimal) time index 7 of the ciphertext to be forged.
Then he chooses between two different types of attacks.

!The term ciphertext, is rarely used in the literature on authentication, but it is justified because our results apply both to
systems that do or do not provide secrecy.



o In a so-called impersonation attack at time ¢, the adversary waits until he has seen the ciphertexts
Ci,...,Ci_y (which he lets pass unchanged to the receiver) and then creates and sends a fraudulent
ciphertext C; which he hopes to be accepted by the receiver as the ith ciphertext C;.

o In a so-called substitution attack at time ¢, the adversary lets pass ciphertexts Ci, ..., C;_1, intercepts
C;, and replaces it by a different ciphertext C; which he hopes to be accepted by the receiver. In a
substitution attack, an adversary can of course only be considered successful when C; is decoded by
the receiver to a plaintext message M; different from the message M; actually sent by the sender.

In order to define what it means for an adversary to be successful in an impersonation or a substi-
tution attack, we can distinguish between three different goals the adversary might want to achieve,
which are described below. In the previous literature, only the first of these cases has been considered.
The adversary can be considered successful when
(a) the receiver accepts C; as a valid ciphertext.

(b) the receiver accepts C; as a valid ciphertext and decodes it to a message M; known to the adversary.
In other words, an adversary is only considered successful if he also guesses the receiver’s decoded
message M; correctly.

(c) For a given fixed message = (on which the attack depends), the receiver accepts C; as a valid
ciphertext and decodes it as M; = z.

Note that cases (b) and (c) differ from (a) only when the plaintext message is not contained in (or
uniquely determined by) the ciphertext, i.e., when the system also provides some degree of secrecy and
hence H(M;|Cy...C;) > 0. These three cases apply to both the impersonation and the substitution
attack.

For an impersonation attack at time ¢ on a given authentication scheme we will denote the proba-
bilities of success for an optimal attack, for the three described scenarios, by Pr;, P;; and Pr; . (z),
respectively. Similarly, for a substitution attack at time 7 on a given authentication scheme we will
denote the probabilities of success for an optimal attack, for the three described scenarios, by Psj,
Pg,; and Pg; . (x), respectively. However, the same bound will apply to all of these probabilities, and
hence they need not be distinguished.

When considering the same success probabilities for a particular observed sequence C; = ¢y, ...,
C;_1 = c;_1 of ciphertexts and, in case of a substitution attack also for a fixed intercepted ciphertext
C; = c;, then we denote the corresponding probabilities by Pr;(ci,...,¢i 1), Pri(ei,...,ci1) and

Tim(T,C1,- -, ¢ 1), respectively, for an impersonation attack at time 4, and by Ps;(cy,...,¢;) for a
substitution attack at time 7. Note that for instance Py ; is the average of Pr;(cy, ..., c;i—1) over choices
of Cly..-yCi—1, i.e.

P[,i = Z PCI...Ci_l(Cl,...,CZ'_l) 'PI,i(Cla---aci—l)-

(cl,...,ci_1)

III. PrEvVIOUS RESULTS AND THEIR LIMITATIONS

The significance of a lower bound result in authentication theory depends on the generality of the
considered model. Instead of reviewing in detail the various papers on the subject, we briefly summarize
the restrictions of the existing results and the generalizations achieved in this paper. We refer to [7],
[10] and [21] for reviews of the literature on the subject.

« Some papers consider the authentication of only a single message [4], [5], [7], [11], [16], [20]. Most
of the papers dealing with the authentication of several plaintext messages M, M, ... consider only
schemes that apply the same encoding rule to every plaintext message M;, thus assuming that all
plaintext messages are different and belong to the same message space [3], [10], [21]. The assumption
that messages be different is necessary to prevent replay attacks in this model, but it appears to be
quite unnatural. The only previous papers considering time-dependent encoding rules are [17], [18],
and [19].

« Some papers are restricted to deterministic encoding rules referred to as authentication codes without



splitting [3], [4], [5], [16], [18], [21]. In this paper there is no need to distinguish between deterministic
and probabilistic encoding rules.

o Some papers are restricted to authentication without secrecy, i.e. where the ciphertext uniquely
determines the plaintext message [3], [16], [20], [18], [21]. Such schemes are sometimes referred to as
Cartesian.

o In all previous papers it is assumed that the receiver never makes an error when seeing a valid
ciphertext, i.e., that his strategy is to accept a ciphertext if and only if it is consistent with the given
secret key K. Our results are more general in that we also provide bounds on an adversary’s cheating
probability when a certain tolerable non-zero probability of rejecting a valid ciphertext is specified.
While this generalization does not appear to be of much practical interest, it is useful because it
establishes the link to the standard hypothesis testing scenario.

Our results hold in a general model without any of the discussed restrictions. Moreover, we need
not assume that M, My, ... are independent and we can allow the encoding rule for message M,
to depend on the previous plaintext messages My, ..., M;_;. Furthermore, as discussed above, the
realistic alternative models in which an adversary is considered successful only when he knows (or can
choose) the plaintext message to which the receiver decodes the fraudulent ciphertext, have not been
considered previously.

IV. HyPOTHESIS TESTING

Hypothesis testing is the task of deciding which of two hypotheses, Hy or Hy, is true, when one
is given the value of a random variable U (e.g., the outcome of a measurement). The behavior of
U is described by two probability distributions: If Hy or H; is true, then U is distributed according
to the distribution Py |y, or Py g,, respectively. For ease of notation we will write Py g, = Py and
Py, = Qu-

A decision rule assigns one of the two hypotheses to each possible value u that U can assume. There
are two types of possible errors in making a decision. Accepting hypothesis H; when Hj is actually
true is called a type I error, and the probability of this event is denoted by «. Accepting hypothesis
Hy when H; is actually true is called a type II error, and the probability of this event is denoted by
B. The optimal decision rule is given by the famous Neyman-Pearson theorem which states that, for
a given maximal tolerable probability 3 of type II error, o can be minimized by assuming hypothesis
H, if and only if

Py (u)

log Qu(w) >T (1)
for some threshold T depending on «. Here and in the sequel, logarithms are understood to be taken
to the base 2. Note that only the existence of T, but not its value is specified by this theorem. The
term on the left of (1) is called the log-likelihood ratio. We refer to [1] for an excellent treatment of

hypothesis testing.
Let Py and @y be arbitrary probability distributions over the same finite or countably infinite set
U. The expected value of the log-likelihood ratio with respect to Py is called the discrimination and

is defined by
Py (u)
L(Py; = Py(u)lo .
(Po; Qu) 1%{ v (u) 8 Qo ()
The discrimination is non-negative and is equal to zero if and only if the two distributions are identical.
A well-known result in hypothesis testing (cf. [1], Theorem 4.4.1%) provides a relation between the
error probabilities & and 3 and the discrimination L(Py; Q). Let the function d(c, 3) be defined by

A 6 1«
= «alo +(1—a)lo
815 (1—a)log 5

2Note that in our formulation of this result we have exchanged o and 3 as well as Py and Q.

d(ev, B)



= —h(a) — alog(l — B) — (1 — a)log 8.

where N
h(a) = —aloga — (1 — a)log(l — a)

is the binary entropy function.
Lemma 1: The type I and type II error probabilities o and 3 satisfy

d(a, ) < L(Py;Qu)-

In particular, for « = 0 we have —log f < L(Py; Qu) which is equivalent to

£ > 9—L(Py;Qu)
Consider the special case of hypothesis testing where U = [S, T'| consists of a pair of random variables
S and T, where Py = Pgsr is the actual joint distribution of this pair and where QQyy = PsPr is the
product of the two marginal distributions. This special case will be important in the analysis of
impersonation attacks. Note that Psy and PsPr are both probability distributions over the same set
S x T (where S and T take on values in S and 7, respectively). We have

L(Psr; PsPr) = ZtPST(S: t) log %
H(S) + H(T) — H(ST)
I(S;T) @)

where the standard definitions of the entropy H(S) of a random variable S, of the mutual information
I(S;T) between two random variables S and 7', and (below) of conditional entropy and conditional
mutual information are used. We also refer to [1] for an excellent introduction to information theory.
The second and third step of (2) follow from these definitions. We have

L(PST; PSPT) = 0

if and only if the two distributions Psy and PsPp are identical, i.e., if and only if S and T are
statistically independent. This fact is needed for deriving the conditions for equality in the lower
bounds which, however, we consider not sufficiently interesting to state in this paper.

The above considerations can be generalized to a scenario where the testing person knows a random
variable V| which can be considered as side information. In other words, we consider a collection of
pairs (Pyjy—y, Quiv=y) of distributions, each pair occurring with probability Py (v). The hypothesis
testing strategy may depend on the value v of V, and for each v we can define o(v) and f(v) as the
error probabilities of type I and II, respectively, given that V' = v. An alternative form of Lemma 1 is
hence

d(a(v), ﬂ(?))) S L(PU\VZU; QU\V:U)- (3)

Equation (2), conditioned on V' = v, becomes:
L(Pstv=y; Psjv=yPriv=y) = I(S;T|V = v) (4)

The following lemma provides a lower bound similar to Lemma 1, where o and [ are taken as the
average (over values of V') error probabilities.
Lemma 2: The average error probabilities of type I and II,

o= Z Py (v)a(v)



and

B=2 Py(v)B(v),

respectively, satisfy
d(a, ) < > Py(v)L(Pyiv=v; Quiv=y)-

v
Proof: The function d(c, ) is a convex-U function in both its arguments and hence one can apply
Jensen’s inequality (cf. [1]) to conclude that

d(a, ) < 2 Pr(v)d(e(v), B(v))-

Now using (3) completes the proof. O

In analogy to above, consider the special case of hypothesis testing where U = [S, T consists of a
pair of random variables S and 7" whose distribution depends on a random variable V', and consider
the collection of pairs of distributions

(Pu|v=v, Quv=v) = (Ps1|v=v, Psjv=oPrjv—0),

each pair occurring with probability Py (v). Then the expression on the right side of the inequality in
Lemma 2 becomes

ZPV(U)L(PU\V:UQ QU|V:1}) = Z PV(U)L(PST\V:U, PS|V:vPT|V:v)

= 2 PvWI(S;TV =v)

= I(S;T|V). (5)

V. IMPERSONATION ATTACKS

We now return to the analysis of message authentication, in particular the impersonation attack.
The problem of deciding whether a received ciphertext C is authentic or not can be viewed as a
hypothesis testing problem. H, corresponds to the hypothesis that the ciphertext is authentic, and
H; corresponds to the hypothesis that the ciphertext has been generated by an adversary. Referring
to Section IV, we are interested in proving lower bounds on £, for a given tolerated upper bound on
a. Such a result is stated in the form

d(e, B) < B

for some bound B which for o = 0 implies —log # < B or, equivalently,
d(a,f)<B = =277 (6)

Consider an impersonation attack on the i-th message M;. The receiver knows K and the ciphertexts
Ci=cy,...,Ci_1 = c¢i_1, and sees a ciphertext C;, which could either be a correct ciphertext C, =
C; sent by the legitimate receiver (hypothesis Hy) or a fraudulent ciphertext C; = C; inserted by
an adversary (hypothesis Hy). A potential adversary would choose C; depending on the observed
particular ciphertexts C; = ¢q,...,C; 1 = ¢;_1, but without further knowledge about the secret key.

In its most general form, an adversary’s strategy for impersonation at time ¢ can hence be described
by an arbitrary probability distribution Q@‘ Ci=e1,..Ci1=c;,» Where we have used the symbol () instead
of P to make explicit that this is a different random experiment than that induced by a legitimate use
of the system. Note that in a deterministic (non-splitting) strategy, Q¢ c,—c,...c; —e: ,(Ci) is equal to
1 for one particular value ¢;, and zero otherwise.



In the sequel, consider probability distributions conditioned on the event that C; = cy,...,Ci_y =
¢i—1. Under hypothesis Hy, the pair [C;, K] (seen by the receiver) is generated according to the
probability distribution

PC-;K|C1:cl,...,Ci_1:Ci_1)

whereas under hypothesis H,, [C1, K| is generated according to the distribution

Q(:’,-\Clzcl,...,c.;_lzci_l : PK|CIZCI7---,Ci71:Ci—1'

The following theorem generalizes results of several papers, including those by Walker [21], Rosen-
baum [10], and Smeets [18]. Recall the definitions of P;; and P ;(cy, ..., c¢;—1) from Section II.

Theorem 3: For every authentication scheme and for every particular values ¢y, ..., c;_1 of observed
ciphertexts, we have

d(a, Pri(cr,...,cic1)) < I(Ci K|Cy =cy,...,Cim1 = ¢i1).

Moreover,
d(a, Pr;) < I(C;; K|Cy---Cia).

In particular, for &« = 0 we have

PIz'(Cly . ci—l) > 2—I(Ci;K|Clzcl,...,Ci_lzci_l)

and
PI,i 2 2—I(C’.;;K\Cl---ci_1).

It it worth discussing this last bound briefly. For the special case of authenticating only a single
message M by the ciphertext C, it is Simmon’s bound [16] which states that the impersonation
probability is lower bounded by 2~/(¢iK)_ This means that unless C leaks a substantial amount
of information about the secret key, authenticity is not achievable. Of course, C should not give
all information about K since this would allow an adversary to guess K and successfully launch a
substitution attack. For the general case of n messages, the theorem states that every ciphertext C;
must give additional information about the key, otherwise the cheating probability in an impersonation
attack is small.

Proof. 1t suffices to describe one strategy that allows the adversary to achieve the cheating probabilities
stated in the theorem. One admissible (but generally not optimal) strategy is for the adversary to
choose C; according to the probability distribution

Qéi|01:c1,...,ci,1:ci,1 = PCi\Clzq,---,Ci—l:C«;—r

Observe that the distribution Pg;jcy—c,,...ci_1=ci_1
key and hence is known to the adversary.

The first inequality of the theorem then follows from equations (3) and (4) by letting V' = [C4, ..., C; 1],
v=le1,...,¢i 1], U=1[C;, K], S =C;, T = K, and hence

does not depend on the particular choice of the secret

PU|V=’U = PC’iK|C’1:cl,...,Ci_1:ci_1

and
Quiv=v = Pci|ci=c1,...Cio1=ci_1 " PriC1=c1,...Ci_1=ci_1-
The second inequality follows from Lemma 2, using equations (4) and (5). The third and fourth
inequalities follow by application of equation (6). O )
Consider now scenario (b) mentioned in Section II, i.e., in addition to having C; accepted by the
receiver the adversary also wants to know the message M; the receiver decodes it to.



Theorem 4: For every authentication scheme and for every particular values cq, ..., c;_1 of observed
ciphertexts, we have

d(&, PIIJ-(Cl, ey Ci—l)) S I(MZCZ, K|Cl = C1y... aCi—l = ci—l)-

Moreover,
d(a, PII,Z) < I(MZCZ, K|01 T Cifl).

In particular, for « = 0 we have

PII ~(C1, e 1) > 2—[(M-;Ci;K|Clzcl,...,ci_1zc-;_1)
i . _ =

and
PII . > 2*[(M-;Ci§K|C’1--.Ci_1)
v — :
Proof. The proof is along the lines of the proof of Theorem 3. Again, it suffices to describe one strategy
that allows the adversary to achieve the cheating probabilities stated in the theorem. One admissible
strategy is to choose the pair [M;, C;] according to the distribution

QMiC’i|Clzcl,...,Ci_1:ci_1 = PM-LCi‘Clzcly---yciflzci—l'

Note that although in reality the plaintext distribution may not even be known to the legitimate users
of the system, we must for the analysis nevertheless assume that the distribution Pa,c;ici=c;,....0;_1=c; 1
is (at least approximately) known to the adversary. The proof is now completed as in the proof of
Theorem 3, replacing all occurrences of C; by M,;C;. O

We observe that since

I(M;Ci; K|Cy---Ci—q) > I(Ci; K|Cy -+ - Ci—y),

the bounds in Theorem 4 are generally smaller than those in Theorem 3. This means, as can be
expected, that cheating is less likely to succeed if the adversary also needs to know the message to
which his fraudulent ciphertext is decoded to. In a system without secrecy, i.e. when M; is determineed
by C;, there is no difference between the two settings. ~

Consider now scenario (¢) mentioned in Section II, i.e., in addition to having C; accepted by the
receiver, the adversary also wants the decoded message M; to be equal to a particular value x.

The proof of Theorem 4 also holds when everything is conditioned on the further event M; = z.
The bounds of the following corollary depend on the particular value x. Some x may allow a higher
success probability than others, and of course the maximum over all values x is also a lower bound on
Pri(ci, ... cic1)-

Corollary 5: For every authentication scheme, for every particular values cy,...,c;_1 of observed
ciphertexts, and for every message x chosen by the adversary, we have

dOé,P”~ T,Cly--.,Ci—1 < ]Ci;K01=Cl,...,Ci_1:Ci_l,Mi:.T.
Iim

Moreover,
d(a, Py

I,i,m

In particular, for & = 0 we have

" —I(Ci;K|Cr=c1,...,Ci_1=¢; _1,M; =)
Prim(,c1,.005c00) > 2 (CisK] =G

and
P[”,Z,m Z 2—I(MiCi;K\Cl---C-;_1,Mizz)'

Some lower bounds of this section for which @ = 0 could be strengthened further along the lines
of [5] where it is suggested to optimize the bounds over choices of the distribution of the message,
resulting in expressions involving the infimum of the mutual information between ciphertext and key,
where the infimum is taken over choices of the plaintext distribution not changing the set of acceptable

ciphertexts.



VI. SUBSTITUTION ATTACKS

The bounds on the success probability in an impersonation attack show that in order for an au-
thentication system to be secure, the ciphertexts C1,...,C; must give substantial information about
the secret key K, thus reducing the adversary’s uncertainty about K. One particular type of substi-
tution attack is to try to guess the secret key K. If this succeeds, then any of the three forms of the
substitution attack succeeds.

In this section we therefore first derive lower bounds on an adversary’s probability of guessing the
correct value of K, given certain side information, which immediately yields a lower bound on the
cheating probability for any of the substitution attacks.

Let S be a random variable. The entropy H(S) is the expected value of —log Ps(S). Because the
minimum of the values occurring in the averaging, namely ming(— log Ps(s)), is upper bounded by the
average, it is straight-forward to prove that

min(—log Ps(s)) = —log(max Ps(s)) < H(S)
and hence that the probability of guessing S correctly when knowing only Ps is lower bounded by

max Ps(s) > 2 HS),

Similarly, when considering side information given in form of the random variable T, where Pgr is
known, we have
max Py > 27 7T
S

for all ¢, and the average (over values of T') success probability of guessing S when given T is

>~ Pr(t) max Pgr(s, t) > 271D
t

as can easily be shown by application of Jensen’s inequality. This leads to the following theorem:
Theorem 6: For all ¢y, ..., c; we have

PS,'A' (Cl, ey Ci) 2 2—H(K|C'1:cl,...,C’i:ci)_ (7)

Moreover,
Ps; > 27 HKIG-Ci), (8)

These bounds also hold for the other two types (b) and (c) of substitution attacks.

VII. CONCLUSIONS

The results of this paper can be combined as described in the following. When a sequence of n
messages, My, ..., M,, is to be authenticated using the same secret key K, an adversary could choose
the type of attack with the highest success probability. A secret key K is used optimally when all
these probabilities are (roughly) equal. When o = 0 is required in all of these possible attacks, we
obtain

n n
—Y logP1;—log Pg, <
=1 =1

(K).

~

I
=

This follows from



The following theorem follows from the fact that —log(.) is a convex-U function. It generalizes results
of Walker [21] and Rosenbaum [10].

Theorem 7: For every authentication scheme for authenticating n messages M, ..., M, in which the
legitimate receiver never rejects a valid ciphertext, we have

max(Pr1,, ..., Prp, Psp) > 27 HE/ (D),

This theorem states that if the adversary can choose between an impersonation attack at any time
1, for 1 < ¢ < n, or a substitution attack at time n, then no authentication system can prevent
him from being successful with probability at least 2-#(K)/(»+1)  Note that the lower bound for the
cheating probability in a substitution attack at time 7 increases with ¢. Therefore it makes no sense
to include the terms Pg;,..., Ps,_1 in the maximization. This can be interpreted as follows: In an
optimal scheme, the key is split into n + 1 parts, where the first n parts are used to protect against an
impersonation attack at times 1 < ¢ < n, and the last part is used to protect against a substitution
attack at the end.

For the special case of authenticating only a single message with the key K (i.e. n = 1), this means
that half of the key is used for protecting against an impersonation attack, and the other half for
protecting against a substitution attack. The success probability is at least one over the square root

of the size of the key space:

1
maX(P],l,PS’l) 2 2_H(K)/2 >

>

where |KC| is the key space. This special case of our bounds confirms a combinatorial result already
known Gilbert et al. [4].
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