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Abstract

It is shown that in the model of generic algorithms, the Diffie-Hellman
decision problem is not polynomial-time computationally equivalent to
the Diffie-Hellman problem.
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Definition 1 Let G be a cyclic group with generator g. The Diffie-Hellman
(DH) problem is to compute, given two group elements g* and g”, the ele-
ment g*¥. The Diffie-Hellman decision (DHD) problem on the other hand

is, given a triple (g%, ¢”, g"), to decide whether w = uv (mod |G|).

Definition 2 Let G be a cyclic group with generator g. A Diffie-Hellman
decision oracle (DHD oracle for short) takes as input a triple (g%, g¥, g%) of
group elements and outputs yes if w = uv (mod |G|) and no otherwise.

Theorem 1 Let n be a positive integer and let p be a prime factor of n.
Assume that a generic algorithm is given that works for groups of order n,
makes calls to a DHD oracle for G and runs in time at most T. Then the
probability, taken over the input and the coin tosses of the algorithm, that
the algorithm correctly solves the DH problem is at most

_(T+3)T+)+4

a s 2p

Proof. Let n = p's with t > 1 and ged(s,p) = 1. We can assume n = p'.
The generic algorithm takes as inputs o(1), o(x), and o(y), where o is
the randomly chosen encoding function, and should compute o(zy). The



algorithm is allowed to call, in addition to the usual oracles for addition and
inversion, an oracle that solves the DHD problem, i.e., that computes the
function DHD with

DHD(o(u),o(v),o(w)) = yes

if w = wv (mod |G|) and DHD(o(u),o(v),0(w)) = no otherwise. Assume
that the algorithm makes A calls to the addition or inversion oracle and B
calls to the DHD oracle in a particular execution. Hence we have A+ B < T.
By calling the oracles, the algorithm can compute P;(z,y),i=1,..., A+3,
for bivariate polynomials P;(X,Y) with P (X,Y) = 1, P(X,Y) = X,
Py(X,Y) = Y, and for i > 3 either P(X,Y) = F(X,Y) + P(X,Y)
or Pi(X,Y) = —P,(X,Y) for some k,l < i. Clearly, P;(X,Y) is a lin-
ear polynomial for all 2. We can assume that all the polynomials are dis-
tinct. Furthermore, the algorithm calls the DHD oracle for B input triples
(Pi(z,y), Pj(z,y), Py(x,y)). Here, we can assume that none of these poly-
nomials is constant, in particular, that the answer of the DHD oracle is not
trivially yes.

Let £ be the event that either Pj(z,y) = Pj(z,y) for some i # j, or
that the DHD oracle answers yes at least once. Observe first that, given &,
everything the algorithm sees is statistically independent from z. Second,
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The first expression in (1) is the number of two-element sets
{3} C {1 A4 3)

times the probability that a linear polynomial takes the value 0 for random
values of the variables. The second expression on the other hand is B times
the probability 2p that a relation of the form

Pi(xay) ’ ]Dj(xay) = Pk(xay)

is satisfied for random z and y (i.e., that a certain quadratic polynomial
takes on the value 0).
Finally, the success probability « of the algorithm satisfies

2 _(T+3)(T+2) +4
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The reason is that, given &, the best thing the algorithm can do is output
one of the values P;(z,y). However P;(z,y) = xy holds with probability at

o < PIE)+ PIE] -



most 2/(p - P[€]) over the random choices of z and y. O

Corollary 2 Let n be an integer and p be a prime factor of n. Let a generic
reduction of the DH problem to the DHD problem for groups of order n be
given with expected running time T. Then

T>p/2—3/2.

Proof. Assume that the execution of the probabilistic algorithm is aborted
after 27T steps. This new algorithm has running time at most 27" and an-
swers correctly with probability at least 1/2. Hence the result follows from
Theorem 1. O

Corollary 3 For groups whose orders n have a prime factor p which is not
of order (log n)o(l), the DHD problem is not polynomial-time equivalent to
the DH problem in a generic sense.
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