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Summary. Virtually all presently-used cryptosystems can theoretically be broken
by an exhaustive key-search, and they might even be broken in practice due to
novel algorithms or progress in computer engineering. In contrast, by exploiting the
fact that certain communication channels are inherently noisy, one can achieve en-
cryption provably-secure against adversaries with unbounded computing power, in
arguably practical settings. This paper discusses secret key-agreement by public dis-
cussion from correlated information in a new definitional framework for information-
theoretic reductions.

1.1 Information-Theoretic Cryptographic Security
1.1.1 Motivation

The security of essentially all presently-used cryptosystems is not proven. It is
based on at least two assumptions. The first assumption is that the adversary’s
computational resources, specified within some model of computation, are
bounded. This type of assumption can be problematic because it may not
even be clear what the right model of computation is, as demonstrated by the
recent proposal of a new computational model, a quantum computer, which
is believed to be strictly more powerful than classical computers.

The second assumption is that the computational problem of breaking the
cryptosystem is computationally infeasible, given the assumed computational
resources. Such an assumption could potentially be proven, but the state of
the art in complexity theory does not seem to be even close to proving any
meaningful lower bound on the hardness of a computational problem. Impor-
tant computational problems on which the security of cryptographic schemes
is based are integer factorisation (e.g., RSA [24]) and computing discrete log-
arithms in certain finite cyclic groups (e.g., Diffie-Hellman [8]).

A cryptosystem for which the security could be rigorously proven based
only on an assumption of the first type would be called computationally secure,
while a cryptosystem secure under neither assumption, i.e., even against an
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adversary with unbounded computing power, is called unconditionally secure
or information-theoretically secure. Such a system is even unbreakable by an
exhaustive search over the key space.* As mentioned, no cryptosystem has
been proven to be computationally secure (except of course those that are
also information-theoretically secure.)

Many researchers have proposed cryptosystems that are unconditionally
secure, with varying degrees of practicality. The most famous (but quite im-
practical) example is the one-time pad discussed later. There are two types of
results on information-theoretic security: impossibility results and construc-
tive results. In this paper we first discuss the impossibility of perfectly-secure
message transmission and then focus on the key-agreement problem to show
that information-theoretically secure key-agreement is possible in arguably
practical settings if noisy information is exploited. We make use of informa-
tion theory and refer to [6] for an introduction to the subject.

1.1.2 Information-Theoretic Security: Perfect Secrecy and
Shannon’s Theorem

Let us start with the classical scenario of a symmetric cryptosystem with
message M, key K, and ciphertext C' (see Fig. 1.1). The following security
definition appears to be the strongest possible for such a cryptosystem.

C M

Alice ——=] Encryption Decryption Bob
K Eve K

Fig. 1.1. A Symmetric Cryptosystem

Definition 1.1. [25] A cipher is called perfectly secret if the ciphertext reveals
no information about the message, i.e., if I(M;C) = 0 holds.

Equivalent characterizations of this condition are that M and C are sta-
tistically independent, or that the best strategy of an eavesdropper who wants
to obtain (information about) the message from the ciphertext is to use only
the a priori knowledge about M and to discard C.

An example of a perfectly secret cipher is the one-time pad that was
already proposed by Vernam in 1926 [26]. Here, the message is a string
M = [my1,ma,...,mpy] of length N, and the key is a uniformly distributed

4 Tt should be mentioned that also unconditionally security is based on an assump-
tion, namely that our probabilistic model of Nature is (at least partially) correct.
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N-bit string K = [ky, k2, ..., kn] which is independent of M. The ciphertext
C is computed from M and K by

C:[Cl,CQ,...,CN]=[ml@k1,m2@k2,...,mN@kN] ==MoK.

A simple proof that the one-time pad is perfectly secret is obtained by
using an entropy diagram (see Fig. 1.2) for the three random variables M, K,
and C, as proposed in [28]. Any two of these random variables determine the
third, hence H({C|MK) = 0, H(M|CK) = 0, and H(K|MC) = 0. The key K
is independent of the message M, and hence the entire entropy of K, namely
H(K) = N must be concentrated in the field I(K; C|M), i.e., I(K;C|M) = N.
Since H(C') < N and the field I(K; C|M) already contributes that much, we
must have I(M; C) = 0 (since I(M; C) is non-negative).

v
&

Fig. 1.2. Entropy diagram for one-time pad encryption.

H(C)

Unfortunately, the price one has to pay for perfect secrecy is that the
communicating parties must share a secret key which is at least as long as the
message (and can only be used once). In view of this property, the one-time
pad appears to be quite impractical

However, Shannon showed that perfect secrecy cannot be obtained in a
cheaper way, i.e., that the one-time pad is optimal with respect to key length.
Maurer [16] proved the stronger statement that the same bound even holds
in the more relevant setting where Alice and Bob can interact by (not secret)
two-way communication.

Theorem 1.1. [25] For every perfectly secret cryptosystem (with unique de-
codability), we have H(K) > H(M).

For a proof of Shannon’s theorem, note first that unique decodability means
H(M|CK) = 0. The entropy diagram of the involved quantities is shown in
Fig. 1.3. We have b > a because I(C; K) > 0, and

HEK)>b—a+c>a—a+c=H(M),

which concludes the proof.
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H(M) H(K)

I(M;C)=0

Fig. 1.3. The proof of Shannon’s theorem.

1.1.3 Optimistic Results by Limiting the Adversary’s Information

Unfortunately, Shannon’s and Maurer’s above-mentioned results imply that
perfect secrecy is possible only between parties who share a secret key of
length at least equal to the entropy of the message to be transmitted. Hence
every perfectly secret cipher is necessarily as impractical as the one-time pad.
On the other hand, the assumption that the adversary has perfect access
to the ciphertext is overly pessimistic and unrealistic in general, since every
transmission of a signal over a physical channel is subject to noise.

Many models have been presented and analyzed in which the information
the adversary obtains is limited in some way, and which offer the possibility
of information-theoretically secure key agreement. If insecure channels are
available, this also implies secret message transmission (using the one-time
pad with the generated secret key).

The condition that the opponent’s knowledge is bounded can for instance
be based on noise in communication channels [27],[7],[1],[16], on the fact that
the adversary’s memory is limited [13] or on the uncertainty principle of quan-
tum mechanics [2, 10].

1.1.4 The Power of Feedback

Wyner [27] showed that in the special case where a (noisy) channel Py x from
Alice to Bob is available, and where the adversary receives a degraded version
Z of Y (through a channel Pz|y, independent of the main channel), secret-key
agreement is possible in all non-trivial cases. This setting was generalized by
Csiszar and Korner [7] who studied the model of a so-called noisy broadcast
channel characterized by a probability distribution Py z|x, where Alice’s input
is X, whereas Bob and Eve receive Y and Z, respectively. They introduced
a quantity, called the secrecy capacity, measuring Alice and Bob’s ability to
generate a virtually secret key (asymptotically, per channel use). Their results
imply that in case of independent binary symmetric channels, key agreement
is possible if and only if Bob’s channel has a smaller error probability than
Eve’s.
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However, the following example, given in [16], illustrates the somewhat sur-
prising fact that by using an insecure feedback channel, secret-key agreement
is possible in the above setting. We start with the situation on the right-
hand side of Fig. 1.4. Here, no secret-key agreement is possible. However, let
us assume an #nteractive variant of this model with an additional noiseless
and insecure but authentic channel. Surprisingly, the situation is now entirely
different although the additional channel is accessible to Eve.

Observe first that the additional public-discussion channel allows to invert
the direction of the noisy channel between Alice and Bob by the following trick.
First, Alice chooses a random bit X and sends it over the noisy channel(s).
This bit is received by Bob as Y and by Eve as Z. Bob, who wants to send the
message bit C to Alice, computes C@Y and sends this over the noiseless public
channel. Alice computes (C®Y) ® X, whereas Eve can compute (C®Y)® Z.
This perfectly corresponds to the situation where the direction of the main
channel is inverted (see Fig. 1.4).

cey

cey cey
(cev)ex
Alice Bob Alice Bob
= o (s
Lo | :

z cey (CeY)oZz

1>

Eve (CeY)ez Eve

Fig. 1.4. Inverting the main channel.

The second crucial observation is that this is exactly the binary-symmetric
setting of Wyner’s wire-tap channel [27], allowing secret-key agreement at a
positive rate. We conclude from this example that the possibility of feedback
from Bob to Alice can substantially improve the legitimate partners’ situation
towards a wire-tapping adversary.

Maurer [16] proposed the following interactive model of secret-key agree-
ment by public discussion from common information (see Fig. 1.5). The par-
ties Alice and Bob who want to establish a mutual secret key have access to
realizations of random variables X and Y, respectively, whereas the adver-
sary knows a random variable Z. Let Pxyz be the joint distribution of the
random variables. Furthermore, the legitimate partners are connected by an
insecure but authentic channel, i.e., a channel that can be passively overheard
by Eve but over which no undetected active attacks by the opponent, such as
modifying or inserting messages, are possible.



6 Ueli Maurer, Renato Renner, and Stefan Wolf

This model is more general and more natural than noisy channel models
since the assumption that the parties have access to correlated information
appears to be realistic in many contexts. In the rest of the paper, this model
will be the basis of our considerations.

Alice —l— Bob
v

Eve Z

Fig. 1.5. Secret-key agreement by public discussion from common information.

1.2 Smooth Rényi Entropies

Let X and Y be random variables with ranges X and ), distributed according
to Pxy. For any event £ with conditional probabilities Pe|xy (z,), let®

Hmin(EX|Y) := —1 P, ,
(EXY) og (z’ﬁlgfxy $X|Y(37 y)

Hmax(EX]Y) : logmeajz»}c|{m € X : Pexy(z,y) > 0},
y

where Pgx )y (z,y) := PS‘XY(;Sf%;XY(m’y) (with the convention that 3 = 0).
The smooth min-entropy and the smooth maz-entropy are then defined
by [22, 23] (see also [18] for a generalization of these entropy measures to

quantum information theory)

Houn(X[Y):=  max  Humin(EX|Y)
E:Pr[€]>1—¢

g P :

Hoax (X1Y) = &Prr[r}gl]rzllngmax(EXlY) ;

where Pr[€] := }° Peixv(2,y)Pxv(,y). Smooth min- and max-entropies
can be seen as generalizations of the Shannon entropy in the following sense.

Lemma 1.1. Let Pxy be fized and let, for any n € N, (X1,Y7),...(Xn,Yn)
be a sequence of random variables distributed according to (Pxy)™™. Then

5 All logarithms are to the base 2.
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lim lim ~HE, (X;--- XnVi -+ Y,) = H(X|Y)

e=+0n—oc0 N min

1
lim lim —H?
e—+0n—ocomM max

where H(X|Y) = H(Pxy) — H(Py) is the Shannon entropy of X conditioned
onY.

Smooth min- and max-entropies satisfy some basic rules that are very sim-
ilar to those known from Shannon theory. The following lemma is an analogue
of the strong subadditivity, H(X|Y Z) < H(X|Z).

Lemma 1.2. Let X, Y, and Z be random variables and let € > 0. Then

Hoin (XY Z) < HL,in (X12)
Hinax (XY Z) < Hpo (X12)

The following is a generalization of the chain rule H(XY|Z) = H(X|Y Z) +
H(Y|2).

Lemma 1.3. Let X, Y, and Z be random variables and let ,€',e"” > 0. Then

anfﬁ (XY|2) > Hin(X|Y Z) + Hiyi, (Y] 2)
in(XY|2) <HZEF (XY Z) + Hio (Y] 2) + log(1/2)

anti (XY|2) < Hpou(X[Y Z) + Hipor (Y1 2)
Hiax(XY|2) > HZ S (XY Z) + Hipiu (Y1 2) — log(1/e) -

1.3 Information-Theoretic Reductions

1.3.1 Resources

Consider a set of players P which have access to a certain set of resources such
as a public communication channel or a source of common randomness. Infor-
mation theory (and cryptography) is concerned with the question of whether
(and how) the players can use a given resource R (or a set of resources) in or-
der to build the functionality of a new resource S, e.g., a secret communication
channel.

On an abstract level, a resource is simply a (random) system [15] which
can be accessed by each of the players in P. For simplicity, we focus on the
restricted class of resources which only take one single input Up from each of
the players P € P and output one single value Vp to each of them. A resource
for an n-player set P = {1,...,n} is then fully specified by a conditional prob-
ability distribution Py,...y, v, ...u, - (If the resource does not give an output to
player P, Vp is defined to be a constant which we denote by L.)
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For the following, we restrict our considerations to situations with three
players and call them Alice, Bob, and Eve. Accordingly, we use the letters A,
B, and FE to denote the players’ inputs and X, Y, and Z for the corresponding
outputs. Typically, Alice and Bob will take the role of honest parties (which
means that they follow a specified protocol) whereas Eve is an adversary who
might behave arbitrarily. We will use the convention that, if no adversary is
present then F :=1.

Let us have a look at some examples of resources, specified by a conditional
probablhty distribution PXYZ|ABE-

Ezample 1.1. An authentic public (£-bit) channel taking input from Alice, de-
noted Authf_’B, is a resource Pxy z|apr whose outputs X, Y, Z simply take
the value of the input A. Formally, for any a € {0, 1},

1l ifz=y=2=a

PXYZ|ABE(:L.7y7Z7a7 b7 6) = {0 otherwise

Similarly, one can define an authentic public two-way channel Authf‘_’B .
Ezample 1.2. An authentic secret (£-bit) channel from Alice to Bob, denoted
Sec?%B , is a resource Pxy z|4pr whose output Y takes the value of the input
A whereas the output Z is constant. Formally, for any a € {0,1}¢,

1l fy=aandzx=2=1

PXYZ|ABE($7y7Z7a7 b7 6) = {0 otherwise

Ezample 1.3. A source of correlated randomness (with distribution Pxyz),
denoted Source(Pxyz), is a resource Pxyzapgp whose outputs X, Y, and
Z are jointly distributed according to Pxyz (independently of the inputs).
Formally,

PXYZ|ABE($ayazaaabae) = PXYZ(:L';yJZ) .

Ezample 1.4. A common secret key (of length £), denoted SK,, is a source of
correlated randomness Source(Pxy z) where X =Y are uniformly distributed
over {0,1} and Z is a constant. Formally,

AT ¢ _
PXYZ|ABE'($ayazaaabJe): {2 lfx_ye{o,l} and 2 =1
0 otherwise.

Ezample 1.5. A unreliable common secret key (of length £), denoted SKfB, isa
resource Pxy z14pp such that the following holds: If £ =1 then the behavior
of the resource is the same as for a common secret key SK,. If E #1 then
X =Y = Z =1. In other words, whenever Alice and Bob get a key then this
key is guaranteed to be secure (i.e., unknown to Eve). However, Eve might
cause the resource to simply output L. Formally,
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27t ifr=ye{0,1}, 2=L,ande=1
PxyziaBe(2,Y,2,a,b,e) = ¢ 1 ifr=y=z=1Lande#L
0 otherwise.

Ezample 1.6. An asymmetric secret key (of length £) with security for Alice,
denoted SK?, is a resource Pxy z|apg such that the following holds: If £ =L
then the behavior of the resource is the same as for a common secret key SK,.
IfE#1 then Y = F and X = Z =1. In other words, whenever Alice gets a
key then it is also known to Bob and secret. However, Eve might cause the
resource to give an arbitrary value (chosen by her) to Bob, but this will be
detected by Alice. Formally,

27t ifx=ye{0,1}},2=L,ande=1
PxyziaBe(2,Y,2,a,b,e) = 1 ify=eandz=2=1
0 otherwise.

Note that a unreliable common secret key (Example 1.5) models what
quantum key distribution (QKD) achieves (using an insecure quantum channel
and an authentic classical channel). As long as the adversary is passive, Alice
and Bob will get a secret key. On the other hand, Eve might intercept the
quantum communication between Alice and Bob, but any severe attack would
be detected (with high probability), in which case no key is generated (see [18]
for more details on security definitions in quantum cryptography).

Distance Between Resources

In order to compare resources, we will need a notion of distance between two
resources. For cryptographic applications, the natural distance measure is the
distinguishing advantage, which is the basis of the following definition.

Definition 1.2. Two resources R and S are said to be e-close, denoted R ~
S, if
Pr[D(R) =0] —Pr[D(S) =0 <¢.
for any system D which interacts with R (or S) and gives a binary output
D(R) (D(S))-
This distance measure has an intuitive interpretation. If two resources R

and § are e-close then they can be considered equal except with probability
(at most) e.

Using Resources in Parallel

Given two resources R and S, we denote by R xS the resource which provides
both the functionality of R and S in parallel. For example, in the three-party
case, Auth?~8 x Source(Pxyz) describes a situation where Alice and Bob
have access to an authentic public channel (from Alice to Bob) and a source
of correlated randomness (with distribution Pxyz).
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1.3.2 Programs and Protocols

Given a resource R, a player P can interact with R by choosing inputs Up
and processing its outputs Vp. Technically, the way a player P uses R can
be described as a random system mp which starts with some input X5, then
interacts with R, and eventually generates an output Y. In the following, we
call 7p a program (for player P). Applying a program mp to a resource R
naturally defines a new resource, which we denote by 7p(R). More generally, if
players P, ..., P, apply programs 7p,,...,7p, to R, we denote the resulting
resource by mp, o---omp, (R). Note that, because all programs act on different
inputs/outputs of R, the order in which the programs are written is irrelevant.

1.3.3 Realizing Resources

For the following definition, we again restrict to the three-party case with
two honest players (Alice and Bob) and a malicious player (Eve). A pair of
programs (w4, 7p) for Alice and Bob is called a protocol. Moreover, we denote
by LEg the program for Eve which inputs L to the resource and outputs L.

Definition 1.3. Let R and S be resources and let m = (w4, 7g) be a protocol.
We say that w e-realizes S from R, denoted

R 5.8
if the following holds:

o maompo Ly (R) ~Llg (S);
e there exists a program 7g for Eve such that w4 o mg(R) ~ 78(S).

Note that the definition imposes two conditions. The first corresponds to
a situation where the adversary is passive. In this case, Alice and Bob apply
their programs w4 and 7p to the resource R, whereas Eve does nothing. The
resulting resource should then be a good approximation of S where, again,
Eve does nothing.

The second condition of the definition corresponds to a situation where
the adversary is active. In this case, it should be guaranteed that Eve could
run some simulator® 7z on S which would give her the same information as
she would get when accessing R.

The relation — is transitive in the following sense.

Lemma 1.4. Given two protocols IT and II' such that R is Sand S LE,
T then the sequential concatenation IT' o IT satisfies R 11_<>1)75+E, T.

In cryptography, this transitivity is also called composability (most notably
in the frameworks for computational cryptography proposed in [17, 5]).

5 The concept of simulators in cryptographic security definitions has been intro-
duced in [11].
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1.3.4 Examples Protocols

Ezxample 1.7. A one-time pad, denoted OTP, is a protocol which (perfectly)
realizes a secret channel using an authentic channel and a secret key (see
Section 1.1.2), i.e.,

Auth2 8 x SK, 254 Secy! P | (1.1)

The protocol OTP = (mwa,7p) is defined as follows: m4 takes as input A,
computes the XOR between A’ and the secret key, and then gives the result
as input to the public communication channel. 7 computes the XOR between
the output of the public channel and the key and outputs the result.

To prove (1.1), we need to verify that the two criteria of Definition 1.3 are
satisfied. For the first, it suffices to check that the resources on both sides of
the identity

maompo LE (Auth?%B x SKy) =1pg (Secf%B)

are equal. In fact, both of them take an £-bit input from Alice and output the
value of this input to Bob, whereas Eve gets a constant.
The second criterion (for € = 0) reads

74 0 mp(Authf ™8 x SKy) = 75(Sec; %)

where 7 is some appropriately chosen program. Note that Eve’s output of
the resource defined by the left hand side of this equality is simply the XOR
between the message and the key. This value is uniformly distributed and
independent of the message. It thus suffices to define 75 as a program which
simply outputs some uniformly distributed ¢-bit string.

Example 1.8. The following protocol IT uses a public authentic channel to
transform an asymmetric secret key with security for Alice into a unreliable
common secret key, i.e.,

SKi' x Auth{~8 L, kAP

Let X and Y be the outputs of SK};‘ on Alice and Bob’s side, respectively. The
protocol IT = (w4, 7wg) is then defined as follows: Alice’s program 74 uses the
public channel to announce whether X =1 and outputs X. Bob’s program
7g outputs L if X =1 and Y otherwise.

Ezxample 1.9. A hashing or privacy amplification protocol HA is a protocol
which uses a source of correlated randomness and an authentic public channel
to realize a secret key (see Section 1.4.5 below). Formally,”

A—B HA
h()()

Source(Pxyz) X Aut —e SK¢

7 Auth%™® denotes an authentic public channel for arbitrarily long messages.
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for any distribution Pxyz with X =Y and HE. (X|Z) > £+2log(1/(c—¢')).
The protocol HA = (wa,nwp) is defined as follows: w4 chooses at random a
function f from a two-universal (see Definition 1.9 below) set of functions
from X to a string of size £, sends a description of f over the channel, and
outputs f(X). g outputs f(Y).

The proof of the above statement follows immediately from the security
of privacy amplification [4, 12, 3] (see Corollary 1.3). This example will be
further elaborated on in Section 1.4.5.

Example 1.10. An information reconciliation protocol IR uses a public channel
to transform a source of correlated randomness Pxy z into another source of
correlated randomness Px'y:z such that X’ = Y’ in such a way that the
decrease of Eve’s uncertainty on Alice’s data is minimal (see Section 1.4.4
below).® Formally,

hA—)B IR
o0

Source(Pxyz) x Aut —. Pxiyrzr

where X' = Y’ and HZ " (X'|Z") > HE, (X|Z) — Hpmax (X|Y) — log(1/ec")
(see Corollary 1.2). In order to achieve this, Alice sends some error correcting
information C' to Bob which, together with his knowledge Y, allows him to
guess Alice’s value X. A conceptually simple way to generate C' is by two-
universal hashing of X (in practice, one typically uses error correcting codes
that have more structure in order to allow computationally efficient decoding
on Bob’s side).

More precisely, the protocol IR works a follows: Alice’s program 74 chooses
at random a function f from a two-universal set of hash functions which map
X to a string of length roughly Hpyax (X |Y) +log(1/e). A description of f as
well as C = f(X) is then sent to Bob using the public channel. Moreover,
Alice outputs X' := X. Bob’s program 7g, upon receiving C, outputs some
string Y which satisfies Px |y (Y'|Y) > 0 (i.e., has non-zero probability from
his point of view) and f(Y') = C (i.e., is compatible with C). For information
reconciliation, see also Section 1.4.4.

1.3.5 Independent and Identically Distributed Resources

In information-theoretic cryptography, one often assumes that Alice and Bob
can use many independent realizations of a given resource (e.g., many inde-
pendently distributed pairs of correlated random values (X,Y)) in order to
produce many independent realizations of another resource (e.g., a secret key
bit). Under this so-called i.i.d. assumption, one can study asymptotic quanti-
ties such as key rates.

8 A secure sketch as defined in [9] can be seen as a special case of an information
reconciliation protocol where the sketching and the recovery procedure correspond
to Alice and Bob’s programs, respectively.



1 Unbreakable Keys from Random Noise 13

Definition 1.4. An asymptotic protocol IT is a sequence of pairs (IIy,Ty)
where, for any k € N, I} is a protocol and 1, € N. The rate of II is defined

by

rate(IT) := klim k .
—00 Tk

Definition 1.5. We say that an asymptotic protocol {(II}, i) }ren realizes S
from R, denoted

Iy, Tk

R 2T S

if there exists a zero-sequence {e}ren (i-€., limg_yo0 € = 0) such that, for
any k € N,
RXTe Ly §¥k

See below for examples of asymptotic protocols.

Definition 1.6. Let IT = {(II}, 1) }ren and II' = {(II}, ;) }ken be asymp-

totic protocols. The concatenation II := II' o IT is then defined by the protocol
{II}, Tk }ren where ITy, ;= II,, o Iy and 7y :=T,, .

Definition 1.7. Let R and S be resources. The rate of R = S is defined by

rate(R = 8§) := max rate(IT)

where the mazimum ranges over all protocols II such that R £ s.

It is straight-forward to prove that composability also holds for this asymp-
totic definition:

Lemma 1.5. Given two asymptotic protocols II and IT' such that R L s

and S == T then the sequential concatenation 7' o w satisfies
RET .

Moreover rate(R = T) > rate(R = §) - rate(S = 7).

1.4 Turning Correlated Randomness into Keys

1.4.1 Generic One-Way Key Agreement

A generic way to generate a key from weakly correlated and only partially
secure randomness is to employ an error correction protocol and then apply
privacy amplification. This process only requires communication in one direc-
tion (e.g., from Alice to Bob). This simple protocol for one-way key agreement
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is also used in more complex key agreement protocols (including QKD proto-
cols) as a last step.®

Theorem 1.2. Let a,b € N and ¢,e',e" > 0 be fized and let £ == a — b —
3log(2/e). Then there exists a protocol KA = KA, , (called one-way key agree-
ment protocol) such that

Source(Pxyz) x Auth2~B 2 sk, | (1.2)

for any Pxyz such that HE. (X|Z) > a and He,, (X|Y) < b, and & > 2¢ +

EI + E”' min max
In particular, for any distribution Pxy 7z with
H i (X1 Z) — Heo (XY) > €4 3log(2/e)
there exists a protocol KA satisfying (1.2).

Note that a very similar result also holds in a quantum world, where Eve’s
information is encoded into the state of a quantum system [18].

Proof. The protocol KA can be defined as the concatenation of the information
reconciliation protocol IR and the hashing protocol HA as in Examples 1.10
and 1.9, respectively. The assertion then follows from the composition lemma
(Lemma 1.4).

1.4.2 Independent Repetitions

Definition 1.8. The secret-key rate of a tripartite probability distribution
Pxyz is defined by

S(nyz) = rate(Source(PXyz) X AuthéoHB % SKl) .
Similarly, the one-way secret-key rate is

S_>(nyz) = rate(SOUFCG(nyz) X Authfo%B g SKl) .
The following lemma gives some basic properties of the secret-key rate.

Lemma 1.6. Let X, Y, and Z be random variables with joint distribution
nyz. Then

1. Local operations by Alice can only decrease the rate: S(Pxyz) > S(Px'yz)
for any X' such that (Y,Z) - X — X' is a Markov chain.

9 A fuzzy extractors as defined in [9] can generally be seen as a one-way key agree-
ment protocol where the generation and the reproduction procedure correspond
to Alice and Bob’s programs, respectively. The helper string generated by the
generation procedure of a secure sketch corresponds to the message sent from
Alice to Bob in a one-way key agreement protocol.
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2. Local operations by Bob can only decrease the rate: S(Pxyz) > S(Pxy'z)
for any Y' such that (X,Z) - Y = Y’ is a Markov chain.

3. Local operations by Eve can only increase the rate: S(Pxyz) < S(Pxyz')
for any Z' such that (X,Y) — Z — Z' is a Markov chain.

4. Giving information U to Eve can only decrease the rate by at most the en-
tropy of U: S(Pxyz) < S(Pxyzu)+H(U|Z) for any random variable U.

The following is an immediate consequence of Theorem 1.2 and Lemma 1.1.

Corollary 1.1. The one-way secret-key rate is lower bounded by
S (Pxyz) > H(X|Z) - HX]Y) . (1.3)

The one-way key agreement protocol presented above is not optimal. In
fact, there are distributions Pxyz where H(X|Z) — H(X|Y") equals zero but
S(Pxvy z) is still positive, as the following example illustrates.

Ezxample 1.11. Let X be a uniformly distributed random bit, let ¥ be the
output of a binary symmetric channel with noise § on input X, and let Z be

the output of an erasure channel with erasure probability ¢’ on input X.
Let 6 := h~'(1) ~ 0.11 and ¢’ := 1/2. Then

H(X|Z) — H(X|Y) =0

Consider now the random variable X’ obtained by sending X through a
binary symmetric channel with noise . Then, for any u > 0,

H(X'|Z) — H(X'|Y) > 0

and hence S(Pxyz) > 0. It thus follows from statement 1 of Lemma 1.6 that
S (nyz) > 0.

1.4.3 Advantage Distillation

There exist situations where the expression in (1.3) is negative, but key agree-
ment is—somewhat surprisingly—nevertheless possible. An example is the
“special satellite scenario” [16], where all involved parties have conditionally-
independent noisy versions of a binary signal. In this case, key agreement
has been shown possible in all non-trivial scenarios, i.e., even when the infor-
mation the adversary obtains about this signal is arbitrarily larger than the
legitimate parties’.

In this case, however, two-way communication is necessary. A concrete
example of such an advantage-distillation protocol is the following: Alice and
Bob repeatedly compare parities of bits publicly and continue the process
only in case of equal parities. Intuitively speaking, this allows them to use the
authentic channel for locating positions where an error is less likely, until they
finally end up in a situation where they know more about each other’s pieces
of information than the adversary (although the latter also learns the public
communication of the protocol).
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1.4.4 Information Reconciliation

During advantage distillation, the partners Alice and Bob compute (possibly
distinct) strings S4 and Sg, respectively, about which the adversary also has
some information. At the end of the key-agreement protocol however, Alice’s
and Bob’s strings must be equal and highly secure, both with overwhelming
probability. The information-reconciliation phase consists of interactive error
correction and establishes the first of these two conditions.

After advantage distillation, Bob has more information about Alice’s string
than Eve has, and after information reconciliation, Bob should exactly know
Alice’s string. (A more general condition would be that after information
reconciliation, Alice and Bob share a string that is equally long as S4 and Sg.)
This leads to a lower bound on the amount of error-correction information
C' that must be exchanged. Namely, Bob must know S4 completely with
overwhelming probability when given Sp and C. Hence, the amount of error-
correction information is at least the uncertainty of S given Sg. On the other
hand, the uncertainty of Sa from Eve’s viewpoint can as well be reduced by
H(C) in the worst case when Eve learns C' (see Fig. 1.6).

Bob's Information Before Information Reconciliation
Alice's String

Error-Correction Information

Eve's Information Before Information Reconciliation

Eve's Uncertainty After Information Reconciliation

Fig. 1.6. The effect of information leaked during information reconciliation

Lemma 1.7 and Corollary 1.2 link information reconciliation to the condi-
tional smooth max-entropy of Alice’s information, given Bob’s.

Definition 1.9. A class H of functions h mapping a set A to a set B is called
two-universalif for all z,y € A, © # y, we have

Prob e, [h(z) = h(y)] =

where h €, H stands for the fact that h is chosen randomly in H according to
the uniform distribution. In other words, a function that is chosen randomly
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from a two-universal class behaves like a completely random function with
respect to collisions. o

An example of a two-universal class of functions, mapping {0,1}" to {0,1}",
of cardinality 2™" are the linear functions.

Lemma 1.7. Let X be a random wvariable on X, let £ be an event, and let
F be chosen at random (independently of X ) from a two-universal family of
hash functions from X to U. Then there exists a function dr depending on F'

such that ¥
Prle A (dr(F(X) # )] <
where Xg := {x € X : Pex(z) > 0}.

Proof. For any hash function F, define Dr(u) := Xg N F~1(u). Moreover, let
dr be any function from U to X such that dp(u) € Dr(u) if Dp(u) # 0.
Observe that, whenever the event £ occurs then X € X¢ and thus X €

Dr(F(X)). It thus suffices to show that Dr(F (X)) contains no other element,
| Xe |

except with probability o ie.,

Pr[|DR(F(X))| > 1] < 1€l

< (1.4)

By the definition of two-universality, Pr[F(z) = F(2')] < ﬁ, for any
z # x'. Consequently, by the union bound, for any fixed z € X,

Pr[3z' € Xe: (z #2') A (F(z) = F(a'))] < % .

This implies (1.4) and thus concludes the proof.

Corollary 1.2. Let X and Y be random wvariables and let F' be chosen at
random from a two-universal family of functions from X to U, where |U| = 2°.
Then there ezists a function dr depending on F such that, for any e > 0,

Pr[dp(F(X),Y) # X] < 2 HaaXIV) 4 ¢ |

Remark 1.1. In order to ensure that errors are corrected except with proba-
bility &, it suffices to use a hash function with output length £ such that

1
(> H  (X]|Y)+1 —
> M (Y1) + 105 ()

for some € < €.
Proof (of Corollary 1.2). Let £ be an event with Pr[f] = 1 — £ such that

Hmax (EX|Y) = HE, (X]Y) . (1.5)
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Let Y be the range of the random variable Y. By Lemma 1.7, there exists a
function dr from U x Y to X such that, for any y € Y,

< {z € X : Pexy(z,y) > 0}
- |
— oHmax(EX|Y)—C

Pr[£ A (dp(F(X),Y) # X)[Y = y]

Moreover, we have

Pr[dp(F(X),Y) # X] <Pr[A(dr(F(X),Y) # X)] + (1 — Pr[€])

< myaxPr[g A(dp(F(X),Y) #X)[Y =y] +e

Combining this with the above and (1.5) concludes the proof.

1.4.5 Privacy Amplification

Privacy amplification is the art of shrinking a partially secure string S to a
highly secret string S’ by public discussion. Hereby, the information of the
adversary about S can consist of physical bits, of parities thereof, or other
types of information (see Fig. 1.7).

D

0)]
N
X

A

a

Eve's Information /

Fig. 1.7. Eliminating Eve’s knowledge by privacy amplification.

N

S!

The following questions related to privacy amplification were studied and
answered in [4],[3]. What is a good technique of computing S’ from S? What
is the possible length of S’, depending on this shrinking technique and on the
adversary’s (type and amount of) information about S?

It is quite clear that the best technique would be to compute S’ (of length
r) from the n-bit string S by applying a random function f : {0,1}" —
{0,1}". However, Alice and Bob would have to exchange r2™ bits of infor-
mation to agree on such a function. On the other hand, there exist relatively
small classes of functions with “random-like” properties. Examples are so-
called universal classes of hash functions, which turned out to be useful for
privacy amplification.
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We analyze the following type of privacy amplification protocols. First,
Alice chooses a random function h from a fixed two-universal class H of hash
functions mapping n-bit strings to r-bit strings for some r to be determined,
and sends (the description of) h publicly to Bob, i.e., also Eve learns h. Then
Alice and Bob both compute S’ := h(S).

The following is a slightly generalized version of the so-called Leftover
Hash Lemma [12, 3].

Lemma 1.8. Let X be a random variable on X, let £ be an event, and let F
be chosen at random (and independently of X ) from a two-universal family of
functions from X to U. Then

|Per(x)r = Peu x Prlli < /|U| max Pex(z) ,

where Pgy is defined by Pey (v) := P‘g‘g], for anyu € Y.
Proof. Using the Cauchy-Schwarz inequality and Jensen’s inequality, we find
|Perxyr — Pev x Prlly = Er [||Per(x) — Peull1]
<Er [\/|U| NPer(x) — Peull3)

< \/|U| -EF [IPer(x) — Peull3] - (1.6)
The Ls-norm under the square root can be rewritten as
Pr[&]?
IPerco = Peoll = IPecosl = “ (1.7

where

|1 Perix)lls = Z Pepx)(u)?

u

= Z z ng(l')ng(:El)

U zeF~(u)
' €F~(u)
= ZPSX )Pex (2')0F (2), 7 (2"
< ZPSX 24 Z Pex (2) Pex (2')0p(a),p(ar) -
z z#z!

Because F' is chosen from a two-universal family of functions with range U,
we have Br[6p (), p(z)] < IU\ for any x # z'. Hence,
Pr[£]?

Ui

Pr[€)?
P 1Pro ] = 32 Pox() + T < mpx Pex () +

Combining this with (1.6) and (1.7) concludes the proof.
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Corollary 1.3. Let X and Z be random variables and let F' be chosen at
random from a two-universal family of functions from X to U, where [U| = 2°.
Then, for anye >0,

HE .
min

|Prxyzr — Pu x Pz x Pr|l1 <2~

(X|z)—¢
2

+ 2¢
where Py is the uniform distribution on U.

Remark 1.2. Note that the distinguishing probability between a perfect key
U and the function output F(X) is given by half the L;-distance on the
left-hand side of the corollary. Hence, in order to get an £-bit key which is
é-indistinguishable from a perfect key, it suffices to ensure that

Houin (X 12) > £+ 21og(1/(£ - ) ,
for some € < €.
Proof (of Corollary 1.8). Let £ be an event with Pr[€] = 1 — ¢ such that
Huin (EX|2) = HE,, (X|2) . (1.8)

Then, by Lemma 1.8,

| Psr(x)F z=- — Pr(€]|Z = z) Py x Prll1 < \/|U| max Pex|z=-(2) ,

for any value z of the random variable Z. Moreover, by the triangle inequality
for the L;-norm,

|1 Pr(xyF|z== — Pu x Prl|1
< 1Perxyizes — Pr(E|Z = 2)Py x Prlly +2(1 - Pr€|Z = 2]) .

Hence,

||PF(X)ZF - PU X PZ X PF||1 = EZ [||PF(X)F|Z:z — PU X PF||1:|
< Bz [ /Ul max Pexjz—.(z) +2(1 — Prl€|Z = 2])]

S \/|Z/{|mangX‘Z:z(m) + 28 =V 2£7Hmi“(gX|Z) + 26 .
T,z

The assertion then follows from (1.8).

1.4.6 Protocol Monotones and Upper Bounds

The described protocol techniques lead to lower bounds on the quantity of
interest, the secret-key rate S. One is, on the other hand, interested in upper
bounds on S and, ultimately, determining S precisely; the latter, however,
has been successfully done in trivial cases only in the two-way-communication
setting.
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Characterization of the One-Way Key Rate

In contrast to this, the one-way communication scenario has been completely
solved [7].

Lemma 1.9. Let X, Y, and Z be random variables with joint distribution
nyz. Then

S_>(nyz) = sup H(U|ZV) — H(UlYV) .
(U V)«X<+(Y,Z)

General Properties of Upper Bounds

Before we discuss concrete upper bounds on S, we observe that any quantity
which is a so-called monotone, i.e., cannot be increased by any protocol and
has some additional properties described in Lemma 1.10.

Lemma 1.10. Let M(X,Y|Z) = M(Pxyz) be a real-valued quantity such
that the following holds:

1. M can only decrease under local operations, i.e., M(X,Y|Z) > M(X",Y|Z)
if (Y,Z) = X = X' is a Markov chain (and likewise for Y ).

2. M can only decrease if public communication is used, i.e., M(XC,Y|Z) >
M(XC,YC|ZC), for any random variable C.

3. M is asymptotically continuous (as a function of Pxyz).

4. M equals one for one key bit, i.e., M(Pss1) = 1 if Pss1 denotes the
distribution of two identical and uniformly distributed bits.

Then M is an upper bound on the key rate, i.e., S(Pxyz) < M(Pxyz).

1.4.7 Intrinsic Information, Information of Formation, and a Gap

In this section, we propose two protocol monotones. The information of for-
mation measures the amount of secret-key bits necessary to generate a certain
partially secret correlation between Alice and Bob. The intrinsic information,
on the other hand, measures, intuitively speaking, the correlation two parties
share and that is unaccessible to and indestructible by an adversary. Finally,
we mention a result showing that an arbitrarily large gap can separate the se-
crecy required for constructing the distribution from the amount of extractable
secrecy.

Information of Formation

Instead of transforming weakly correlated and partially secure data into a
secure key, one could also do the opposite [19].
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Definition 1.10. The information of formation (also called key cost) of a
tripartite probability distribution Pxyz is defined by

Ttorm (Pxyz) := rate(SKy x Authf:B iy Source(Pxyz)) ™"
It is easy to verify that the information of formation satisfies the assump-
tions of Lemma 1.10, i.e., S(Pxyz) < ltorm(Pxyz)- Alternatively, the same
conclusion can be obtained using Lemma 1.5.

Intrinsic Information

It is straightforward to verify that the mutual information I(X;Y") as well
as the conditional mutual information I(X;Y|Z) satisfy the assumptions of
Lemma 1.10, i.e., they are both upper bounds on the secret-key rate. The
following definition is motivated by this observation.

Definition 1.11. Let X, Y, and Z be random variables with joint distribution
Pxvyz. The intrinsic information is defined by
I(X;Y | 2):= inf I(X;Y|Z") .
(XY 4 2) 2 ZeX,y) SR

Again, it is straightforward to verify that I(X;Y | Z) satisfies the as-
sumptions of Lemma 1.10, i.e., it is an upper bound on the secret-key rate,
S(Pxyz) < I(X;Y | Z). On the other hand, we have I(X;Y | Z) <
Itorm(Pxyz).

The Gap

Interestingly, it has been shown [19] that the gap between S and Iform can
be arbitrarily large, whereas it is still unknown whether there exists a classi-
cal analog to bound quantum entanglement, i.e., undistillable entanglement: a
distribution satisfying S = 0 and Ifor, # 0.

Lemma 1.11. For any d > 0 there exists a probability distribution such that
S(Pxyz) < 0 whereas Itorm(Pxvz) > 1.

1.5 Secrecy from Completely Insecure Communication

So far in this chapter, we have considered scenarios where the channel connect-
ing Alice and Bob is authentic. In this section, we show results demonstrating
that unconditionally secure key agreement can even be possible from com-
pletely insecure communication, i.e., a channel over which the adversary has
complete control. Clearly, she can always choose to prevent key agreement in
this case, but it should not happen that Alice or Bob believe that key agree-
ment was successful although it was not. We consider three special scenarios
in this setting: Independent repetitions, privacy amplification, and general
one-way key agreement.
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Independent Repetitions: An All-Or-Nothing Result

In the scenario where a random experiment Pxy z is independently repeated
a great number of times, an all-or-nothing result has been shown: Either key
agreement is possible at the same rate as in the authentic channel scenario,
or completely impossible.
The robust secret-key rate S*(X;Y||Z) is the rate at which a key can be
generated in this scenario:
S*(Pxyz) := rate(Source(Pxyz) x Chan2<5 LN SKy) .

oo
Here, Chanfo‘_’B stands for a completely insecure bidirectional channel.

Theorem 1.3. [14] If there exists a channel Px , such that Pgy = Pxy
holds or a channel P?\Z such that Pyy = Pxvy, then S*(Pxyz) = 0. Other-
wz’se, S*(nyz) = S(nyz).

1.5.1 Privacy Amplification: Authentication is for Free

In the special case of privacy amplification, it has been shown [20] that the loss
of the communication channel’s authenticity does not (substantially) decrease
the length of the extractable key, but the obtained key is only asymmetrically
secure, i.e., only one party (Alice) knows whether it is secret. (For a formal
definition of such an asymmetry, see Example 1.6)

Theorem 1.4. Let Pxyz be a distribution where X and Y are identical n-bit
strings such that Hmin(X|Z) > tn, for some fized t > 0. Then there exists a
protocol II such that

Source(Pxyz) X Chanfo“’B LE SK}4

where £ = (1 — o(1))tn and € is exponentially small in n.

1.5.2 Robust General One-Way Key Agreement

The result of Theorem 1.4 has been generalized in [21] to the case where
Alice’s and Bob’s strings are not identical initially, i.e., where information
reconciliation and privacy amplification have to be combined.

Theorem 1.5. Let Pxy 7 be a distribution where X and Y are n-bit strings
such that Huyin (X|Z) — Hpax(X|Y) > tn, for some fized t > 0. Then there
exists a protocol I such that

Source(Pxyz) X ChanOAo‘_’B i>E SK?

where £ = (1 — o(1))tn and € is exponentially small in n.
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Roughly speaking, Theorem 1.5 states that the length of the extractable key
is the difference between Eve’s and Bob’s uncertainties about Alice’s string.
Similarly, it is also possible to generate an (unreliable) common secret key.

Theorem 1.6. Let Pxyz be a distribution where X and 'Y are n-bit strings
such that Hpin(X|Z) — Hymax (X|Y) — Hmax (Y| X) > tn, for some fized t > 0.
Then there exists a protocol II such that

Source(Pxyz) X ChaniB A, SKB

oo

where £ = (1 — o(1))tn and € is exponentially small in n.
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