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ABSTRACT

Most protocols for distributed, fault-tolerant computation,
or multi-party computation (MPC), provide security guar-
antees in an all-or-nothing fashion. In contrast, a hybrid-
secure protocol provides different security guarantees de-
pending on the set of corrupted parties and the computa-
tional power of the adversary, without being aware of the
actual adversarial setting. Thus, hybrid-secure MPC proto-
cols allow for graceful degradation of security.

We present a hybrid-secure MPC protocol that provides
an optimal trade-off between IT robustness and computa-
tional privacy: For any robustness parameter p < 3, we
obtain one MPC protocol that is simultaneously IT secure
with robustness for up to ¢t < p actively corrupted parties,
IT secure with fairness (no robustness) for up to t < %, and
computationally secure with agreement on abort (privacy
and correctness only) for up to ¢ < n — p. Our construc-
tion is secure in the universal composability (UC) framework
(based on a network of secure channels, a broadcast chan-
nel, and a common reference string). It achieves the bound
on the trade-off between robustness and privacy shown by
Ishai et al. [CRYPTO’06] and Katz [STOC’07], the bound
on fairness shown by Cleve [STOC’86], and the bound on IT
security shown by Kilian [STOC’00], and is the first protocol
that achieves all these bounds simultaneously.
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1. INTRODUCTION

1.1 Secure Multi-Party Computation

The goal of multi-party computation (MPC) is to perform
a computation in a distributed, private, and fault-tolerant
way [33]. For this purpose, a fixed set of n parties runs a
protocol that tolerates an adversary corrupting a subset of
the participating parties. Actively corrupted parties may
deviate arbitrarily from the protocol, whereas passively cor-
rupted parties follow the protocol and, intuitively speak-
ing, only try to violate privacy. Security requirements for
MPC in the literature (e.g. [17]) include privacy, correct-
ness, robustness, fairness, and agreement on abort. Privacy
is achieved if the adversary cannot learn more about the
honest parties’ inputs than what can be deduced from the
inputs and outputs of the corrupted parties. Correctness
means that the protocol either outputs the intended value
or no value at all. Privacy and correctness are the two basic
requirements. Possible additional requirements are notions
of output guarantees, which we discuss in order of decreas-
ing strength: A protocol achieves robustness if an adversary
cannot abort the computation, preventing the honest par-
ties from obtaining output. Fairness is achieved if the honest
parties obtain at least as much information about the output
as the adversary. Agreement on abort means that all hon-
est parties detect if one of them aborts (and then generally
make no output).

Goldreich et al. [19] provide a first general solution to the
MPC problem®, based on computational (CO) intractability
assumptions and a broadcast (BC) channel. They achieve
full security against ¢ < 3 actively corrupted parties, or pri-
vacy and correctness only (no fairness or robustness) against
t < mn actively corrupted parties. If no BC channel is avail-
able, privacy and correctness against t < n actively cor-
rupted parties can also be obtained using the BC construc-
tion from [15]. Robust MPC without BC channel is possible

'Essentially, [19] presents the general idea, while [18] gives
a detailed protocol description and a proof of security.



if and only if ¢t < % parties are corrupted in both the CO
and the IT setting [30]. The protocols of both [2] and [9] are
IT secure, require no BC channel, and achieve this bound.
When a BC channel is available [31], or if no robustness but
only fairness is required [15], the bound for IT MPC can be
improved to t < 3.

The adversarial setting is defined by the combination of
the computational power of the adversary and the cardi-
nality of the set of corrupted parties. Impossibility proofs
show that most security guarantees can be achieved simul-
taneously (i.e. by a single protocol) only in a subset of all
adversarial settings. Cleve [11] shows that fairness for gen-
eral MPC can be achieved only for ¢ < % actively corrupted
parties. The same bound holds for IT security given a broad-
cast channel [26]. Ishai et al. [24] and Katz [25] show that a
protocol which guarantees robustness for up to p corrupted
parties can be secure with abort against at most n — p cor-
rupted parties, and describe CO secure protocols that match
these bounds.

1.2 Hybrid Security and our Contribution

Conventional, non-hybrid MPC protocols distinguish only
between adversarial settings in which they provide all spec-
ified security guarantees, and settings in which they provide
no security guarantees at all. In contrast, MPC protocols
with hybrid security provide different security guarantees
for each adversarial setting, without being aware of the ac-
tual setting. Hence, they allow for graceful degradation of
security.

Specifically, we discuss a protocol providing strong secu-
rity guarantees for few corruptions in the IT setting, and
weaker security guarantees for many corruptions in the CO
setting. More precisely, for any robustness parameter p < %
and any static adversary actively corrupting ¢ parties, we de-
scribe an MPC protocol 7 that simultaneously provides IT
security with robustness, correctness and privacy for ¢ < p,
IT security with fairness, correctness, and privacy for t < 7,
and CO security with agreement on abort, correctness, and
privacy for t < n — p. Hence, our protocol is optimal un-
der the bounds on fairness [11], IT security [26], and the
trade-off between robustness and privacy [24, 25].

Our protocol is based on a complete network of synchro-
nous secure channels, a synchronous authenticated broad-
cast channel, and a common reference string (CRS). The
security is proven in the universal composability model [5].
In [28, 32], we also present results for the stand-alone setting
without CRS.

Furthermore, we present a modified version of the protocol
with weaker security guarantees, which does not require a
broadcast channel.

1.3 Related Work

Chaum [8] sketches a protocol construction secure against
passive adversaries that simultaneously guarantees CO pri-
vacy for any number of corrupted parties, and IT privacy
for a corrupted minority. In contrast to our work, [8] does
not discuss the active setting, and hence does not guarantee
correctness, fairness, or robustness in case of active corrup-
tions. It is not evident how this protocol would be extended
to the active setting. A crucial technique of both Chaum’s
approach and ours is party emulation, which allows a set
of parties to implement an additional virtual party for a
higher level protocol. This technique was first used in [4]
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to improve the threshold of broadcast protocols in a setting
where privacy is not relevant. Damgard et al. [13] extend the
technique to improve the threshold of general MPC proto-
cols. In [23], this technique was discussed in the stand-alone
setting for perfectly secure MPC and applied to general ad-
versary structures.

Fitzi et al. [15] improve upon [2, 9] in the IT setting when
no BC channel is available by allowing for two thresholds ¢,
and t., where t, = 0 or t, + 2t. < n. For t < t,, corrupted
parties, fully secure MPC is achieved, while for ¢, < t <
t. corrupted parties, non-robust (but fair) MPC is accom-
plished.

Another work by Fitzi et al. [16] also combines IT and
CO security: Up to a first threshold t,, the security is IT.
Between ¢, and a second threshold ¢, IT security is guaran-
teed if the underlying PKI is consistent. Finally, between ¢,
and T, the protocol is as secure as the signature scheme in
use. Fitzi et al. show that their notion of hybrid MPC is
achievable for (2T +t, < n) A (T + 2t, < n), which they
prove to be tight.

Both [15] and [16] work in a setting without BC chan-
nel. When a BC channel is provided, our results improve
substantially upon those of [15, 16]. As [15] only treats IT
MPC and [16] only treats robust MPC, both [15, 16] do not
reach beyond ¢t < % corrupted parties, nor are they easily
extended. In contrast, we can guarantee CO security with
agreement on abort for ¢ < n — p. In the setting without
BC channel and for p > 0, our results match those of [15]
(which they prove optimal for this case). However, for the
special case that p = 0 (i.e., no robustness is required) our
construction achieves I'T fairness for t < 3, and CO security
with agreement on abort for ¢ < n corrupted parties, which
goes beyond [15].

2. SECURITY DEFINITIONS

2.1 Universal Composability

We follow the Universal Composability (UC) paradigm
[5, 1], which uses a simulation-based security model. Here,
we only give a high-level overview of the paradigm, see [5]
for technical details. The security of a protocol (the real
world) is defined with respect to a Trusted Third Party or
Ideal Functionality F that correctly performs all computa-
tions (the ideal world). Informally, a protocol 7 is secure if
whatever an adversary can achieve in the real world could
also be achieved in the ideal world.

More precisely, let P = {1,...,n} be the set of all parties.
We only consider static corruptions and use ‘H C P to denote
the set of honest parties, and A = P\ H to denote the set of
corrupted parties. In the real world, there is a given set of
resources R to which, for each honest party i € H, a protocol
machine 7; is connected. Apart from interacting with the
resources, protocol machines provide an interface to higher
level protocols for input and output, called an I/O-channel.
Corrupted parties access the resources directly which models
that they do not adhere to the protocol. The complete real
world is denoted by 7 (R). In [5], resources are modeled as
ideal functionalities available in a hybrid model® (e.g., au-
thentic or secure channels, broadcast channels). The ideal
world consists of the ideal functionality F and an ideal ad-

2Note that the term “hybrid model” is not related to the
notion of hybrid security.



versary (or simulator) o connected to F via the interfaces
of the corrupted parties A. This ideal world is denoted by
aa(F).

A protocol 7 is said to securely implement a functional-
ity F if, for every possible set A of corrupted parties, there
is a simulator o such that no distinguisher D can tell the
real world and the ideal world apart.® For this purpose, the
distinguisher directly interacts either with the real or with
the ideal world, by connecting to all open interfaces, and
then outputs a decision bit. This interaction is denoted by
D(X), where X € {mn(R),aa(F)}.

In [5], all protocol machines, simulators, ideal functional-
ities, and distinguishers are modeled as interactive Turing
machines (ITM). We define X" as the set of all ITMs, and
2 as the set of polynomially bounded ITMs. Note that, in
this paper, ITMs are specified on a higher level of abstrac-
tion.

Definition 1. (Universally Composable (UC) Security) A
protocol m UC securely implements an ideal functionality F
if VA Jaa € X vD e xef/al

IPr[D(4(F)) = 1] — Pr[D(mn(R)) = 1| < =(x)
where (k) denotes a negligible function in the security pa-
rameter . For D € X the security is computational (CO).
For D € ¥, the security is information-theoretic (IT).

Simulators must be efficient not only in the CO, but also
in the IT setting, since otherwise, I'T security does not imply
CO security. Our formalization of hybrid security uses ideal
functionalities that are aware of both the set of corrupted
parties and the computational power of the adversary. In
other words, the behavior of the functionality, and hence the
security guarantees, varies depending on both parameters.
A protocol m UC securely implements an ideal functional-
ity F with hybrid-security if 7 securely implements F in both
the CO and the IT setting. Note that, in contrast to [5], we
use a synchronous communication model with static corrup-
tion. The bounds for MPC mentioned in Section 1.1 apply
to this model.

In the UC setting, a strong composition theorem can be
proven [5, 1]. This theorem states that wherever a proto-
col 7 is used, we can indistinguishably replace this protocol
by the corresponding ideal functionality F together with an
appropriate simulator.*

2.2 Ideal Functionalities for MPC

MPC protocols implement ideal functionalities £ that per-
form certain computations which are described in some speci-
fied language. We describe computations as programs®, i.e. ar-
bitrary sequences of operations on values from a predefined
finite field, where each operation is one of input, addition,
multiplication, or output.® Given such a program C, an

3In this model, the adversary is thought of as being part of
the distinguisher. Canetti [5] shows that this model without
adversary is essentially equivalent to a model with adversary,
since the security definition quantifies over all distinguishers.
4This follows from the free interaction between the distin-
guisher and the system during the execution, which implic-
itly models that outputs of the system can be used in arbi-
trary other protocols, even before the execution ends. This
is in contrast to a stand-alone definition of security where
the distinguisher receives output only at the end.

5A computation could equivalently be modeled as a circuit.
5Tt is out of scope of this paper how the program is deter-
mined. We simply assume that all entities “know” what to
do next.
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MPC functionality £[C] evaluates the program operation-
wise, and stores intermediate values internally in a vector
of registers. Basically, it works as follows: In case of an in-
put operation, £[C] receives an input from a certain party
over the corresponding I/O-channel and stores it internally
in a new register. In case of an addition operation, £[C]
adds the two corresponding values internally, and stores the
result in a new register. The case of a multiplication opera-
tion is handled analogously. In case of an output operation,
E[C] retrieves the corresponding value from the register, and
outputs it to all parties.

The operations defined above capture only deterministic
computations with symmetric output. However, probabilis-
tic computations with asymmetric output can be reduced
to these operations [3, 10]. Furthermore, note that such
programs can also perform the computations necessary for
realizing an arbitrary protocol machine, thereby allowing for
party emulation.

In our work, we are interested in ideal functionalities that
evaluate programs with various security guarantees (i.e. only
with a subset of the security properties described in Sec-
tion 1.1, but generally at least encompassing privacy and
correctness), depending on the adversarial setting.

Full Security implies privacy, correctness, and robust-
ness. Hence, given a program C, an ideal functionality eval-
uating C with full security follows the program without de-
viation.

Fair Security implies privacy, correctness, and fairness.
Given a program C, an ideal functionality evaluating C with
fair security executes input, addition, and multiplication op-
erations without deviation. However, in case of an output
operation, the functionality first requests an output flag o €
{0,1} from the adversary (default is o = 1 if the adversary
makes no suitable input). Then, for o = 1 the functionality
executes the output operation with output to all parties,
for o = 0, the functionality halts.

Abort Security implies privacy, correctness, and agree-
ment on abort. Given a program C, an ideal functionality
evaluating C with abort security executes input, addition,
and multiplication operations without deviation. In case of
an output operation, the functionality first outputs the cor-
responding value to the adversary and requests an output
flag 0o € {0,1} from the adversary (default is o = 1 if the
adversary makes no suitable input). Then, for o = 1, the
functionality executes the output operation with output to
all parties, for o = 0, the functionality halts.”

No Security: Given a program C, an ideal functionality
evaluating C with no security forwards all inputs from the
honest parties to the adversary and lets the adversary deter-
mine all outputs for honest parties. As a simulator ¢"*°* can
use the inputs of honest parties to simulate honest protocol
machines, this already proves the following (rather trivial)
lemma:

LEMMA 1. Given a program C, any protocol m UC se-
curely implements the ideal functionality evaluating C with
no security.

We therefore omit this case from the description of the
simulators in this work.

"We could relax the definition further by allowing the ad-
versary to send one output flag for each party, dropping
agreement on abort. However, all our protocols will achieve
agreement on abort.



3. APROTOCOL OVERVIEW

Our result for hybrid-secure MPC is formalized by the
ideal functionality £*°[C]. This functionality evaluates a
program C with IT full security for ¢ < p corrupted par-
ties, with I'T fair security for ¢ < % corrupted parties, and
with CO abort security for ¢ < n — p corrupted parties (see
Figure 1).

Given a robustness parameter p < % and a program C, the
ideal functionality £*[C] evaluates C according to the num-
ber t of corrupted parties and according to the computa-
tional power of the adversary (CO or IT).

| Setting | Security Guarantees |
t<p IT/CO || evaluate C with full security
p<t<F IT/CO || evaluate C with fair security
5 <t<n-p|CO evaluate C with abort security
2<t<n 1T . .
2 i
e p<i<n | CO evaluate C with no security
Figure 1: The ideal functionality £)*°[C].

We present a protocol ¥ that UC securely implements
the functionality Egyb[C] from an m-party communication
resource com™ (consisting of a complete network of syn-
chronous secure channels and a synchronous authenticated
n-party broadcast channel), and an n-party CRS crs™ drawn
from a predefined distribution. A CRS (or an equivalent re-
source) is required to avoid the impossibility results of [5,
6].8 The proof of Theorem 1 stating the security of the pro-
tocol 7 is an application of the UC composition theorem to
Lemma 2, Lemma 3, Corollary 1, and Lemma 5.

THEOREM 1. Given a program C and a robustness param-
eter p < 5, protocol m” UC securely implements the ideal
functionality Sgyb [C] evaluating C, from a complete and syn-
chronous network of secure channels and an authenticated
broadcast channel com™, and a common reference string crs™,

in the presence of a static and active adversary.

3.1 Overview and Key Design Concepts

Basically, the protocol 7° consists of three protocol layers:
On the lowest layer, the n parties use a technique called party
emulation to emulate another, (n + 1) party. The emula-
tion of a party makes it harder for the adversary to control
this party: It is not sufficient to corrupt a single party, but,
in our case, it is necessary to corrupt at least 7 real par-
ties to control the emulated party. Hence, more trust can
be placed in this emulated party. On the middle layer, an
(n+1)-party MPC protocol is carried out among the n orig-
inal parties and the emulated party. This protocol provides
IT guarantees given that a designated party is honest (this
designated party is the emulated party), and CO guarantees
otherwise. While it already achieves the correctness, robust-
ness, and fairness requirements (both IT and CO), only the
input of the designated party is IT private. The remaining
parties obtain only CO privacy. To additionally fulfill the
privacy requirement, on the highest layer, the parties ex-
ploit this asymmetry: Each party splits its input into two

81t is possible to minimize the reliance on the crs™ such that
our protocols tolerate an adversarially chosen crs" for few
corrupted parties by applying techniques from [20, 21] and
a (t,2t — 1)-combiner for commitments (e.g. [22]). However,
this construction is beyond the scope of this paper.

halves, and provides one half as input via a regular party,
and the other half as input via the designated party. Addi-
tional techniques are required here to maintain correctness
and robustness.

More formally, the protocol 7 is modularized into three
subprotocols: the emulation, the designated party, and the
input subprotocol. Each subprotocol implements an ideal
functionality on which the next subprotocol is based (see
Figure 2).

Fa )

T
i Input Subprotocol
| where €’ is C with a modified input operation
( ghesemc) )
»
T
mdesp Designated Party Subprotocol

d
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|
|
|
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Figure 2: A visualization of the construction under-
lying our hybrid-secure MPC protocol 7.

The goal of the emulation subprotocol (Section 4) is to
implement a protocol machine 7* belonging to an (n 4 1)
party, as formalized by the ideal functionality emul[7*] (Fig-
ure 4). This subprotocol is based on the given resources
com™ and crs”. On the one hand, a protocol machine per-
forms certain computations that can be modeled as a pro-
gram (see Section 2.2). On the other hand, it communicates
with given resources. As a consequence, the subprotocol for
party emulation is again modularized into two subprotocols
wP° and 7°". The subprotocol 7#P® implements an MPC
functionality to evaluate the program of 7* (Section 4.1).
The subprotocol 7" enables the interaction between the
emulated 7* and the resources com™' and crs"™! (Sec-
tion 4.2).

The designated party subprotocol ° (Section 5) is ba-
sically an (n + 1)-party protocol and implements the ideal
functionality €Se5’e"‘ [C'] that provides stronger security guar-
antees if a designated party is honest. This subprotocol is
based on emul[r*]. While we think of protocol 7% as an
n+ 1 party protocol, one of the protocol machines (ﬂ_ges,p ) is
actually emulated by the ideal functionality emul[7*], i.e. in
fact we set the parameter 7* = ﬂ_(d)es,p and run an n-party

‘fes”’ ..., m? on a resource that emulates the
(n+ 1)* party 75",

Finally, the input subprotocol 7" (Section 6) implements
the ideal functionality for hybrid security, £*°[C], based on
£3%°™[C']. For this purpose, we define the program C’ eval-
uated by £9°°™[C'] to be equivalent to the program C eval-
uated by E°[C], however with a modified input operation
taking into account the input splitting and the techniques
to preserve correctness and robustness mentioned above.

protocol



4. PARTY EMULATION

In this section, we describe a technique for party emula-
tion. This technique allows to emulate an arbitrary protocol
machine 7* and to employ it in a higher level protocol. A
protocol machine fulfills two tasks which we discuss sepa-
rately: On the one hand, it performs certain computations
(discussed in Section 4.1), on the other hand, it sends and re-
ceives messages over its interfaces (discussed in Section 4.2).

4.1 Emulating the Computation of =

A protocol machine 7* internally performs certain compu-
tations. These computations can be modeled as a program
that can be evaluated by an MPC functionality, as discussed
in Section 2.2. For the purpose of achieving hybrid-secure
MPC, we require the emulation of 7* to be IT full secure
for t < 3 corrupted parties. This security requirement is
captured by the ideal functionality £'T[C*] evaluating a pro-
gram C* (Figure 3). Note that in Section 4.2.2, we define C*
such that it contains not only the operations performed by
7", but additional operations enabling communication over
the interfaces of 7*.

n I/O-channels belong to the n parties emulating 7. Ac-
cordingly, the interface of emul[r*] for each party consists
of three subinterfaces: Each party has access to its corre-
sponding interfaces of com”™*! and crs"*!, and may provide
input to and receive output from 7* over its corresponding
I/O-channel to 7*.

For t < % corrupted parties, emul[7”] internally emulates
the ideal functionalities com™*! and crs™*!, and the protocol
machine 7%, and connects them accordingly. In this setting,
the protocol machine 7* works according to its specification,
i.e. can be considered honest. We denote this behavior of
emul[7*] with [crs" !, com™t!, 7*].

For t > %, emul[n"] transfers control over the (emulated)
protocol machine 7* to the adversary. Hence, emul[7*] only
emulates com™™ ! and crs™ ™!, and gives the adversary access
not only to the interfaces of com™*! and crs"*! belonging
to corrupted parties, but also to the interfaces belonging to
the emulated protocol machine 7*. Furthermore, the I/0O-
channels from honest parties to 7* are directly connected
to the adversary. We denote this behavior of emul[7*] with
[ers™ Tt com™ ).

Given a program C*, the ideal functionality £'7[C*] evaluates
C*, according to the number ¢ of corrupted parties:

| Setting [ Security Guarantees |
t <3 | IT/CO || evaluate C* with full security
5 <t | IT/CO || evaluate C* with no security

Figure 3: The ideal functionality £'7[C*].

The subprotocol 7P™8 has to implement the ideal function-
ality £'7[C*] from a complete network of synchronous secure
channels and a BC channel. As stated in Lemma 2, the
protocol presented in [31] already fulfills all requirements.

LEMMA 2 ([31, 12, 5]). Given an arbitrary program C*,
there is a protocol that UC securely implements the ideal
functionality S'T[C*] from a complete network of synchronous
secure channels and a BC channel com™, in the presence of
a static and active adversary.

4.2 Connecting =~ to the Resources

In the previous section, we described a protocol 7P°® that
emulates the computations of a protocol machine 7*. In
this section, we describe a protocol 7" that enables the
communication over the interfaces of the emulated 7*. This
communication includes the interaction with the resources
(i.e. a complete network of synchronous secure channels and
a BC channel for n + 1 parties, denoted by com™*!, and
an (n + 1)-party CRS crs"™'), as well as the input from
and output to the emulating parties. Before we present the
protocol 7", we give a formal description of the ideal func-

con

tionality emul[7*] implemented by 7".

4.2.1 The Ideal Functionality for Emulated Parties

We now give a description of the ideal functionality emul[r™]
(summarized in Figure 4). Basically, emul[7*] internally em-
ulates the resources com™! and crs"*!, and a protocol ma-
chine 7*. This protocol machine is given to emul[r*] as a
parameter, and is an arbitrary protocol machine with the
condition that it has a com™* and a crs"™! interface, and
n I/O-channels (instead of a single one as usual). These
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Given a protocol machine 7*, the ideal functionality
emul[r*] evaluates a program either for [crs™™* o

,com
or for [crs" T com™ '] according to the number ¢ of cor-
rupted parties:

Setting Security Guarantees
t< % | IT/CO | evaluate the program for
[crs" ™! com™ ! 7] with full secu-
rity
5 <t | IT/CO || evaluate the program for
[ers™™! com™ 1] with full security

Figure 4: The ideal functionality emul[7™].

4.2.2 Protocol 7"

Here, we describe a protocol 7" that implements the
ideal functionality emul[7*], based on the ideal functionali-
ties £'T[C*] (evaluating a program C* to be defined below),
com™, and crs™.° The task of 7" is twofold: On the one
hand, it turns the n-party resources com™ and crs” into re-
sources for n + 1 parties. On the other hand, it connects
the emulated protocol machine 7* (running as part of C* on
E'T[C*]) to these resources. The protocol 7" consists of the
n protocol machines 7", ..., 75" run by the real parties,
and an additional protocol machine denoted by wg™" that
runs as part of C* on £'7[C*]. In fact, 75" is a wrapper for

7%, and we parametrize £'7 [C*] with the program that emu-

lates 75" connected to all interfaces of 7*, which we denote
by C* = #g™" (7).
Each protocol machine 75" (i € {1,...,n}) is connected

to the resources com™, crs™ and £'7[C*]. In turn, via its I/O-
channel to higher level protocols, 7°" provides access to a
com™! a crs™™ and one I/O-channel of 7*. The protocol
machine 7§™" is connected to all interfaces of 7. Further-
more, each one of the n interfaces of £'T[C*] (the ideal func-
tionality evaluating C* = #§™"(7™)) serves as a secure channel

between 75" and a protocol machine 7" (i € {1,...,n}).

9 As stated in Theorem 1, we assume a single resource com”.
However, for the emulation subprotocol, we require two in-
dependent copies of com™, which can be achieved by multi-
plexing the given com™.



Using these secure channels, protocol 7" enables the in-

teraction between 7* and the resources com™ and crs”, and
thereby extends these resources to (n + 1)-party resources.

Basically, the protocol machines 7" only receive mes-
sages and forward them on the correct interface and with
the correct label. For broadcast messages and the CRS,
consensus among all parties is guaranteed by additionally
performing a majority vote on messages relating to w§™".
Given that ¢ < 4 parties are corrupted, this results in a
correct (n + 1)-party broadcast and CRS. For ¢t > % cor-
rupted parties, 7* is controlled by the adversary and it is
not necessary to securely extend the resources. Figures 5
and 6 provide a technical description of the protocol ma-
chines 7§ and 75" (i € {1,...,n}), respectively. A proof
of the following Lemma can be found in [29].

LEMMA 3. Protocol " UC securely implements emul[r*]
from com™, crs™, and the functionality £7[C*] evaluating
C* = wg(7™), in the presence of a static and active ad-
versary.

75" connects to all interfaces of protocol machine 7*, i.e. to
the com™ ™! interface, the crs" ! interface and to the n I/O-
interfaces. In turn, 75" makes direct use of the n interfaces
of £T[C*] as secure channels to the 7¢" (i € {1,...,n}).
m6™" then processes messages as follows:

Secure Channels: Messages from 7°" that are labeled
as secret message from party ¢ are forwarded to the
com™ L interface of 7*. Messages for party ¢ from the
com™tLinterface of 7* are labeled as secret message

from the emulated party and sent to m5°".

I/0 for 7*: Messages from 7§°" labeled as input to 7" are
forwarded to the protocol machine 7* as input to the
I/O-interface of party . Outputs from 7* on the I/O-

con

interface of party ¢ are labeled as such and sent to 7

Broadcasts: Messages labeled as broadcast messages from
party j, if received identically from more than 7 pro-
tocol machines 7{°", are forwarded to the com™!-

interface of 7#* as broadcast messages from party j.

Otherwise, they are ignored. Broadcast messages from

the com”™*linterface of 7* are labeled as broadcast

con

messages from the emulated party and sent to all 7}
(ie{l,...,n}).
CRS: A message labeled as CRS, if received identically

from more than % protocol machines 7°", is forwarded

to the crs"*! Otherwise, it is ignored.

interface of 7*.

Figure 5: The protocol machine 7§™".

S. MPC WITH A DESIGNATED PARTY

In this section, we present an (n + 1)-party protocol 7
that implements an ideal functionality Sﬁes [C'] for designated
party MPC from a common reference string crs”*' and an
(n 4 1)-party communication resource com™"*. The behav-
ior (and hence the provided security guarantees) of the ideal
functionality 5geS[C'] depend in particular on a designated
party. For ease of notation, we assume that this designated
party is party 0, and that the remaining parties are num-
bered 1,...,n.

des,p
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7" connects to the interfaces of com™, crs™ and £'7[C*]

belonging to party i. The interface to £'7[C*] serves as a
secure channel to 7g™". Via its I/O-channel, 7{°" provides
access to a com™™ ! a crs"*! and one I/O-channel of 7*.

75" then processes messages as follows:

Secure Channels: Messages arriving on the I/O-channel
labeled as secret messages for party j (j € {1,...,n})
are forwarded to com™. Messages from party j arriving
on the com™-interface are output over the I/O-channel
as messages from party j. Messages arriving on the
I/O-channel labeled as secret messages for =* are for-
warded to 7w5°". Messages from 7§°" labeled as secret

message from 7* to party i are output over the I/O-

channel as messages from 7*.

I/0 for 7*: Messages arriving on the I/O-channel labeled
as inputs to 7 are forwarded to 7g™". In turn, messages
from 75" labeled as outputs from 7* are output over
the I/O-channel.

Broadcasts from party i € {1,...,n}: Broadcast mes-
sages arriving on the I/O-channel are forwarded
to com™ and to wg™", labeled as broadcast messages
from party 7. Broadcast messages from party j
arriving on the com”-interface (unless labeled as origi-
nating from 7*) are both output over the I/O-channel
and forwarded to mg™", labeled as broadcast from
party j.

Broadcasts from 7*: Messages from n™" labeled as
broadcast messages from 7" are forwarded as broad-
cast messages to com™ (including the label). Broad-
cast messages arriving on the com™-interface labeled as
originating from 7*, if received identically from more

than % parties j, are output over the I/O-channel as
broadcast message from 7*.

CRS: On first activation, 7{°" retrieves the CRS from the
crs” functionality, labels it accordingly, and both out-

puts it over the I/O-channel and sends it to 7g™".

Figure 6: The protocol machine 7§°".

For the sake of simplicity, we describe the designated party
protocol as a usual (n + 1)-party protocol, without taking
into account that one of the parties is emulated. The se-
curity of the corresponding subprotocol in our construction
can easily be derived from the security of this (n + 1)-party
protocol, and is stated in Corollary 1.

5.1 The Ideal Functionality for Designated
Party MPC

The ideal functionality £3%[C’] for n + 1 parties evalu-
ates an arbitrary program C’ and provides stronger security
guarantees if the designated party O is honest. In the fol-
lowing descriptions, the number ¢ of corrupted parties al-
ways pertains to the parties 1,...,n, and never includes the
designated party 0, which is treated separately. If the des-
ignated party 0 is honest, functionality £5°°[C’] guarantees
IT security with correctness and fairness for all parties, as
well as IT privacy for the input from party 0, against any
number of corrupted parties. Additionally, it guarantees I'T
robustness against ¢ < p corrupted parties. If the designated
party 0 is corrupted, functionality £5°°[C’] still provides CO
security with correctness and privacy to the honest parties



Given a robustness parameter p < % and a program C’, the ideal functionality Ef,'es[C'} evaluates C’ according to the
computational power of the adversary (CO or IT), the honesty of party 0, and the number ¢ of corrupted parties in

{1,...,n}. Sges [C'] provides one interface to each party i € {1,...,n}, and n interfaces to party 0.
Setting Security Guarantees
IT/CO | Party 0 t Priv. party 0 | Priv. party ¢ | Cor. | Fair. | Rob.
honest t <p yes no yes™® | yes yes
IT p< t <n yes no yes'® | yes no
corrupted 0< t <n (corrupted) no no no no
honest t <p yes yes yes yes yes
co p< t <n yes yes yes yes no
t <n—p]| (corrupted) yes yes no no
corrupted 11
n—p< t <n (corrupted) no no no no

Addition and multiplication operations are always executed without deviation. In contrast, the execution of input and
output operations depend on the security guarantees:

Privacy for party j € {0,...,n}: Execute input operations for party j without deviation.

No privacy for party j € {0,...,n}: The input is additionally sent to the adversary.

Robustness: Execute output operations without deviation.

No robustness but fairness: In case of an output operation, request an output flag o € {0, 1} from the adversary (default
is 0 = 1 if the adversary makes no suitable input). Then, for o = 1, execute the output operation with output to all parties,
for o = 0 halt.

No fairness but correctness: In case of an output operation, output the corresponding value to the adversary and
request an output flag o € {0,1} from the adversary (default is o = 1 if the adversary makes no suitable input). Then,

for o = 1, execute the output operation with output to all parties, for o = 0 halt.
No correctness: Receive a value from the adversary and output this value to all parties.

Figure 7: The ideal functionality £5°[C’].

against t < n—p corrupted parties. The functionality Sses €]
is described in Figure 7.

5.2 A Designated Party MPC Protocol

We now describe a designated party MPC protocol 7
which implements the (n+ 1)-party functionality £5[C’] for
designated party MPC from a common reference string crs™ !
and an n+ 1 party communication resource com”t. We ob-
tain protocol 7%* by adapting the CO MPC protocol of [7]
to our needs.

The protocol in [7] evaluates programs consisting of in-
put, addition, multiplication, and output operations (see
Section 2.2). During an input operation, the party providing
input commits to its input and shares it among all parties
according to a predefined secret sharing scheme. In [7], this
is a simple XOR n-out-of-n sharing, but as described in [18]
a different sharing can be used to trade privacy for robust-
ness. Addition operations are evaluated locally. To evaluate
a multiplication operation, [7] uses oblivious transfer (OT)
primitives. All intermediate results are computed as shar-
ings, and each party is committed to its shares. To achieve
security against active adversaries, each party proves the
correctness of the messages it sends using zero-knowledge
(ZK) proofs. During output operations, each party opens

des,p

10Correctness is maintained in the sense that the ideal func-
tionality still performs the desired computation. However,
the adversary may make inputs dependent on the inputs of
honest parties in the current and previous input phases.
1Our protocol 79# could be modified to achieve correct
and input-independent non-interactive MPC in this case.
For our subsequent results, though, we need not demand
correctness here.
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the commitment to its share of the final result, which can
then be reconstructed locally.

Essentially, to achieve the asymmetric security guaran-
tees of £9°[C'], we need to provide IT security guarantees to
the designated party, without compromising the original CO
security guarantees for the remaining parties. In the follow-
ing, we describe how the components in [7] can be modified
accordingly.

5.2.1 Summary of Modifications

The protocol in [7] is based on three primitives: OT, com-
mitment, and ZK proofs. Basically, these primitives are two-
party primitives, and each one can be implemented such that
one of the two parties obtains IT security guarantees, while
the other party still has CO guarantees. In [29], a detailed
discussion of suitable primitives can be found. Hence, in
each invocation between the designated party and a normal
party, the designated party can be protected against an IT
adversary. Using such primitives is merely a refinement of
[7], so, in the CO setting, the original security guarantees
are still valid.

Furthermore, we need to modify the sharing scheme and
the output reconstruction in [7] in order to meet the robust-
ness and fairness requirements. We have to robustly tolerate
t < p corruptions among the parties ¢ € {1,...,n}, while
preserving the unconditional privacy of party 0. This can
be accomplished by modifying the underlying sharing of [7]
as described in [18, Section 7.5.5]. We use a sharing scheme
where any set M of n — p+ 1 parties that includes party 0 is
qualified, i.e., can reconstruct. Such a sharing can efficiently
be implemented using a (2n — p)-out-of-(2n) Shamir-sharing
where party 0 receives n shares and each remaining party ¢
obtains a single share. Here, we inherently trade privacy for



robustness: Any qualified set M of parties can reconstruct
the input of the remaining parties. So, on the one hand,
any qualified set M of honest parties can recover the input
of up to p corrupted parties ¢ € {1,...,n}. This ensures
robustness, when ¢ < p corrupted parties try to disrupt the
computation. On the other hand, any such qualified set M
of corrupted parties can violate the privacy of the remaining
parties.

Finally, we have to guarantee fairness whenever party 0 is
honest. As noted in [18], a party can violate fairness only
if it holds the last share required for reconstruction and all
other parties already opened their commitments. In our
case, party 0 is always required for reconstruction. Hence,
if we specify that party 0 opens last and only if it can con-
tribute sufficiently many shares such that all parties can
reconstruct the result, then the resulting protocol 7" is
fair in the IT setting as long as party O is honest.

5.3 The Security of the Designated Party Pro-
tocol

The modifications to the protocol from [7] result in a pro-
tocol 7%%” that provides the designated party 0 with IT
security guarantees, while protecting the remaining parties
with CO security. In [29], we provide a proof sketch for the
following lemma:

LEMMA 4. Given an arbitrary program C' and a robust-

ness parameter p < %4, protocol 74P UC securely imple-

ments the ideal functionality E5°[C'] evaluating C', from a
complete and synchronous network of secure channels and
an authenticated broadcast channel com™, and a common
reference string crs™ T, in the presence of a static and active
adversary.

Computational assumptions sufficient for implementing
the necessary primitives for protocol 79 in particular per-
fectly hiding or perfectly binding UC secure commitments
[14], are, for instance, the p-subgroup assumption or the
decisional composite residuosity assumption. A similar ap-
proach, where all parties use primitives that IT disclose no
undesired information is used in [27] to achieve long-term
security for specific functions.

The protocol 79? does not fit directly into the setting of
the overall protocol 7”: On the one hand, in protocol 7*,
there are only n parties running a protocol based on the
functionality emul[7*] emulating 7* = 75 and the re-
sources com™ ! and crs"*!. On the other hand, these n par-
ties have to implement the ideal functionality £5°°™[C'], and
not £5°[C’], where the only difference is that £5°°™[C'] is
specialized for a setting where the designated party 0 is em-
ulated. That means, the security guarantees provided by
Sges’em [C'] do not depend on the honesty of party 0, but on
the bound ¢ < % for a correct emulation (see Section 4.1).
More to the point, IT privacy, correctness and fairness can
be violated only by a corrupted majority. Furthermore, the
input for party O is provided by the n real parties. For
this purpose, Sges’em [C'] provides a second interface to each
party, corresponding to one of the n interfaces of party 0
to £9°[C’]. Inputs over these interfaces are treated as in-
put from party 0 when evaluating the program C’. That is,
the privacy of these inputs is guaranteed even against 1T
adversaries.

A formal description of £9°°™[C'] is obtained by replacing
the condition on the honesty of party 0 in Figure 7 by the

bound ¢ < %, and adjusting the interfaces accordingly (see
129)).

Basically, the following corollary is only a technical modi-
fication of Lemma 4 to our needs:

COROLLARY 1. Given an arbitrary program C' and a ro-
bustness parameter p < %, the protocol machines ers"’, ey
mae=P UC securely implement the ideal functionality £5°°™[C']
evaluating C', from the ideal functionality emul[n*] parame-
trized with ™™ = Wges"’, in the presence of a static and active
adversary.

6. REALIZING HYBRID-SECURE MPC

In this section, we describe an n-party protocol 7™ im-
plementing a hybrid-secure MPC functionality £/°[C] (Fig-
ure 1) based on the designated party MPC functionality
E3°m[C'] (see Section 5.3 or [29]), and the program C’ to
be evaluated by £3°"[C’]. We introduce one by one the
three techniques used to (1) fulfill the privacy requirement
of £)°[C], while (2) preserving the correctness and (3) the
robustness provided by £5¢°m[C’].

(1) The functionality £5°[C] specifies IT privacy for t < 2
and CO privacy for t < n— p. The protocol 7" achieves this
requirement by having 7" share any input z; as z; = 2@z,
where z¥f is chosen uniformly at random over the input
space.'? Recall that Sges’em [C'] provides each party with two
interfaces: a regular one, and one that corresponds to one
of the n interfaces of the designated party 0 (called party-
0-interface). The protocol machine 7" inputs z5° at its reg-
ular interface to functionality £5°°™[C’], while entering the
share zi via its party-O-interface to functionality £5°°™[C'].
Functionality £3°°"[C’] guarantees IT privacy for inputs
over a party-O-interface for ¢ < 7, and CO privacy for inputs
over a regular interface for ¢ < n — p. The input splitting
combines the two privacy guarantees and, hence, accom-
plishes the privacy requirements of €2yb[C].

(2) To preserve CO correctness for t > %, additional mea-
sures are needed: For ¢t > 7, the party-0-interfaces are con-
trolled by the adversary, who could manipulate the input
at will, effectively manipulating the inputs z; to produce
incorrect results. This adversarial behavior can be pre-
vented using commitments: Let commit and open denote
the respective procedures of a UC secure IT hiding com-
mitment scheme (see [14, 29]). First, 7" computes an IT
hiding commitment to z together with its opening infor-
mation (¢;,0;) = commit(z). Then, it inputs the commit-
ment ¢; together with x§° at its regular interface to function-
ality £3°°"[C'], while entering the matching opening infor-
mation o; together with zif at its party-O-interface to func-
tionality £5°°™[C’]. Functionality £5°°"[C’] checks these
commitments. The case where a commitment fails to open
correctly is treated in the next paragraph. This construction
achieves CO correctness, because a CO adversary control-
ling the party-O-interfaces cannot open such a commitment
incorrectly. At the same time, the unconditional privacy of
the z! is unaffected as the commitments ¢; are IT hiding.

(3) Finally, we need to preserve IT robustness for t < p.
Essentially, this means that Sges’e"‘ [C'] may not simply abort
if a commitment ¢; fails to open correctly. Instead, it outputs

12 As mentioned in Section 2.2, we assume a field structure
with operation @ over the input space.



a complaint, requesting that party ¢ inputs x; directly via
its regular interface to £3°°"[C’]. This procedure does not
affect privacy, since commitments ¢; fail to open correctly
only if either party i is corrupted or if the party-0O-interfaces
are controlled by the adversary. In the first case, we need
not guarantee privacy to party ¢. In the latter case, we
have t > 4 corrupted parties, so we only need to guarantee
CO privacy of z;, which £5°™[C’] already does. Correctness
is maintained since privacy is maintained and a party can
only replace its own input.

The IT fairness properties of £5°°™[C’] are unaffected by
the measures described above, so the resulting protocol is
fair whenever ¢t < 7 parties are corrupted, i.e. whenever the
designated party 0 is honest.

Summarizing the measures above, we obtain a protocol "
(Figure 8) and a matching program C’ (Figure 9) to be eval-
uated by functionality £5°°™[C']. Protocol 7" takes care
of sharing inputs, providing commitments and answering
complaints. The program C’ is merely a slight adaption of
the (target) program C evaluated by £°[C]. It additionally
reconstructs the inputs, checks commitments, makes com-
plaints, and only then evaluates C.

Protocol machine 7" connects over the regular and the
party-O-interface belonging to party i to the functional-
ity £9°°™(C’]. In turn 7" offers an I/O-interface to higher
level protocols. The protocol machine 7" then proceeds as
follows:

1. On receiving an input on the I/O-interface: Choose 'f
uniformly at random and compute z° i O
#f. Using the IT hiding commitment scheme com-

pute [c;,0;] = commit(z]). Pass input (25°, ¢;) to the

regular interface and (z¥,0;) to the party-O-interface
of £5°°"[C’]. Receive a complaint bit e on the regular
interface of £5°°™[C’]. If e = 1, then input z; to the

regular interface of £5°%°™[C’].

. On receiving an output y on the regular interface
of £3%™[C'], output y on the I/O-interface.

Figure 8: The protocol machine 7.

The program C’ is identical to the (target) program C ex-
cept for the input operations. Addition, multiplication and
output operations are executed unmodified.

In case of an input operation for party ¢ in program C, pro-
gram C’ takes an input (z5°, ¢;) over the regular interface to
party ¢, and an input (mi{‘, 0;) over the party-O-interface to
party i. If =it # open(c;, 0;), it outputs a complaint bit e = 1
to all parties, and takes a new input x; over the regular in-
terface to party 4 (default to z; = L if no input is provided).

Otherwise, it outputs e = 0 and computes z; := z5° @ z'F.1°

Figure 9: The program C' to be evaluated by

6Ses,em [CI].
A proof of the following Lemma can be found in [29].

LEMMA 5. Given an arbitrary program C and a robust-
ness parameter p < 3, protocol ™" UC' securely implements

13Note that the output of the complaint bit is a regular out-
put. If robustness is not guaranteed, the adversary might
interrupt the computation at this point.
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the ideal functionality EY°[C] evaluating C, from a desig-
nated party MPC' functionality £55°™[C'], in the presence of
a static and active adversary.

7. PROTOCOLS WITHOUT BROADCAST
CHANNEL

In this section, we discuss a protocol for hybrid secure
MPC in a setting without BC channel. To be able to use our
protocol w° (which relies on a BC channel), we implement a
BC channel from a complete network of synchronous secure
channels. For this purpose, we use the construction from
[15] that provides an IT secure BC channel bccons With ex-
tended consistency and validity detection. For two thresh-
olds t, and t., where t, < t. and either t, = 0 or t,+2t. < n,
bceicons delivers a robust BC for ¢t < ¢, and a BC with
fairness (but without robustness) for ¢, < ¢ < t.. The con-
struction of bcg,cons is based on a detectable precomputation,
which either establishes a setup for a robust BC (for ¢t < ¢,
always) or aborts with agreement on abort (for ¢ < ¢.).

For a robustness bound p > 0, we let t, = p < 3
te = [25%] — 1. This choice of parameters achieves IT full
security (with robustness) for ¢ < p and IT fair security (no
robustness) for ¢ < “>£2. Unfortunately, these results do
not (and cannot) go beyond those of [15], which they have
proven optimal for this case.

However, for robustness bound p = 0, we let t, = p =0
and t. = n. In this case we achieve IT fair security (no
robustness) for ¢ < % and CO abort security for ¢ < n.
This choice of parameters yields a protocol that extends the
existing results and actually matches the result in Theorem 1
for p = 0 in the case where a BC channel is provided. This
construction, where protocol 7° is run with p = 0 on the BC
implementation above, is denote by 7°.

and

THEOREM 2. Given an arbitrary program C, protocol m°
UC securely implements the ideal functionality €3yb[C] evalu-
ating C, from a complete and synchronous network of secure
channels (without BC channel), and a common reference
string, in the presence of a static and active adversary. Let
t be the number of corrupted parties. Then 7° evaluates C
with IT fair security for t < %, and with CO abort security,
for t < mn corrupted parties.

8. CONCLUSIONS

We describe a hybrid secure MPC protocol that provides a
flexible and optimal trade-off between IT full security (with
robustness), IT fair security (no robustness), and CO abort
security (no fairness). More precisely, for an arbitrarily cho-
sen robustness parameter p < %, the protocol is IT full
secure for t < p, IT fair secure for t < %, and CO abort
secure for t < m — p actively and statically corrupted par-
ties. These results are optimal with respect to the bounds
stated in [11, 26, 25, 24]. We provide a security proof of
the protocol in the UC setting based on synchronous secure
channels, a broadcast channel, and a CRS.

Furthermore, we discuss the synchronous secure channels
model without BC. Here we find that for robustness parame-
ter p > 0 the results of [15] are already optimal, but for p = 0
our protocol achieves the same results as in the case where
a BC is provided, indicating that a BC channel is required
only for robustness.
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