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Abstract

A probabilistic discrete system (PDS) is an abstract object operating
in rounds. In every round, an environment (which is a complex object
like a PDS) can input a value and the system responds with an output
value. A PDS may be probabilistic and each round may depend on the
previous rounds. Many cryptographic systems (which can be modeled as
probabilistic discrete systems) have security definitions based on an envi-
ronment interacting with the system, essentially modeling the adversary.
For example, a system is defined to be secure if it is indistinguishable
from a certain ideal system for any environment, leading to the notion
of a distinguisher.

Recently, Maurer proposed a novel paradigm called environment-less, in
which properties of systems are expressed as intrinsic properties of the
systems as objects themselves, free of the notion of an environment or
an adversary. The paradigm gives new insight into the very essence of
the properties and enables more minimal and abstract reasoning about
systems.

This work makes the first steps towards an environment-less (crypto-
graphic) systems theory. We show that two key properties of crypto-
graphic systems, namely the indistinguishability of two systems and the
optimal winning probability of a game, can be stated equivalently and
naturally within the environment-less paradigm. Our treatment is ab-
stract: we merely assume that an object of a set A is observable by one
function (or projection) of a set F . As a consequence, our results are
applicable to a broad class of system types and beyond.

Furthermore, we present a new variant of Maurer’s theory of discrete
systems. In contrast to Maurer’s representation, we define discrete sys-
tems as inductive objects. We show how this new representation allows
to prove elementary statements about systems in a rigorous and formal-
izable manner.

Finally, we use environment-less indistinguishability to prove a new in-
distinguishability amplification theorem in an elementary fashion, gen-
eralizing previous results. This demonstrates that the environment-less
paradigm is not only of conceptual interest but a powerful technical tool
as well.
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Chapter 1

Introduction

1.1 Motivation
In many areas of computer science and in particular in cryptography, we are
interested in discrete systems. Informally, a discrete system is an abstract ob-
ject which operates in rounds. In the i-th round, an input xi is answered with
some output yi. A discrete system may keep state and may be probabilistic,
i.e., the output yi may depend probabilistically on the inputs and outputs of
previous rounds.

One often discusses properties of discrete systems depending on what inter-
action is allowed with the system, leading to the notion of environments and,
in cryptography, to the notion of distinguishers. A natural question is what
kind of statements which classically involve environments can be expressed
equivalently as intrinsic properties of the systems themselves, i.e., without the
explicit concept of an environment.

We call this the environment-less paradigm and explain it informally by two
examples.

(i) Imagine a game which is modeled by a probabilistic discrete system
G. A player (or a winner) can interact with G in multiple rounds (see
above) and in the final round, G announces whether the player has won
or lost the game. Naturally, we are interested in the maximal winning
probability ν(G) of a given game G, i.e., the probability that player P
wins the game G, maximized over all players P. We now claim that

ν(G) ≤ ε if and only if there exists G′ equivalent to G such that
with probability at least 1− ε, G′ is an always-lose game.

We explain this statement by a concrete example. Let n ∈ N≥1 be
a constant and let G be the game which samples a uniform random
number X from the set {1, . . . , n}. In the first and only round, the
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1. Introduction

player has to input a number X ′ ∈ {1, . . . , n}. The player wins if and
only if she guessed the number correctly, i.e., X ′ = X. It is easy to see
that the maximum winning probability is ν(G) = 1

n .

Now consider the game G′ which samples a biased bit win ∈ {0, 1} such
that win = 1 with probability 1

n . In the first and only round, the player
has to input a number X ′ ∈ {1, . . . , n}. The player wins if and only if
win = 1 (irrespective of the input X ′).

The games G and G′ are equivalent: Whatever number is input, the
game is won with probability 1

n . Moreover, with probability 1 − 1
n , G′

is an always-lose game: If win = 0, then the game is lost (without even
considering the player). Thus, the above claim is satisfied.

Observe that the ”if” direction of the claim is unsurprising. If G is
always-lose with probability 1 − ε, clearly no player can win G with
probability greater than ε, thus ν(G) ≤ ε. The ”only if” direction,
however, is not obvious. Interestingly, it is true even for much more
complex games with multiple dependent rounds and even if we allow
adaptive players.

Finally, note that a game being always-lose is an intrinsic property of the
game as object: We merely need to verify whether it is possible (with
non-zero probability) that the game announces the winning event. If
this is not possible, the game is always-lose.

(ii) A distinguisher D is a probabilistic discrete system trying to distinguish
between two systems S and T. In particular, the goal of D is to interact
with the connected system and to guess whether the system is S or T.
The distinguishing advantage measures how well a distinguisher can tell
the two systems apart. As in the first example, we are interested in the
maximal distinguishing advantage ∆(S,T). We now claim that

∆(S,T) ≤ ε if and only if there exist S′ equivalent to S and T′

equivalent to T such that S′ and T′ are equal with probability 1− ε.

Loosely speaking, ”S′ and T′ are equal with probability 1 − ε” means
that there exists a (joint) distribution over pairs of deterministic discrete
systems, such that the marginal distributions are S′ and T′, respectively,
and both discrete systems are equal with probability 1− ε. This can be
equivalently expressed using the statistical distance of distributions.

The above claim generalizes the well-known fact that for systems which
are just random variables, the maximal distinguishing advantage is sim-
ply the statistical distance of the corresponding distributions. As a con-
sequence, the claimed equivalence enables reasoning about the distance
of systems without mentioning environments at all, expressing a purely
intrinsic property of systems as objects.
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1.2. Related Work

The motivation for the outlined way of thinking is at least two-fold:

• First, it gives new insight into what our systems actually are. This can
be used to justify classical definitions which are often not very intu-
itive (e.g., the distinguishing advantage), and it allows to reason about
discrete systems in a clearer and more minimal manner.

• Second, it can be understood as a technical lemma and therefore used
as a technical tool to prove new statements about environments while
completely avoiding environments (with their complexity) in the proof
itself.

The long-term goal is to develop a complete (cryptographic) systems theory
which is environment-less. This work makes the first steps in this direction
by discussing the property of system indistinguishability and a basic variant
of game winning probability.

1.2 Related Work
A first version of discrete systems, called random systems, is described by Mau-
rer in [9]. An extended theory of deterministic systems has been introduced
in [12].

Furthermore, we follow for the most part the paradigms introduced in the
theories of Abstract Cryptography [14] and Constructive Cryptography [10].
In particular, we strive for a high level of abstraction. We follow the top-down
paradigm and attempt to introduce only essential elements. This approach
results in more minimal statements which are at the same time more general.

1.3 Contributions and Outline
This work makes three main contributions, each of which relies on the previous
one. We remark, however, that each contribution has been developed to be of
independent interest.

• In Chapter 3, we introduce the concept of the intersection of (sets of)
abstract distributions. Based on this concept, we define observation
compatibility, which relates the abstract indistinguishability of distribu-
tions X and Y under a set of functions (or projections) F with the
intersection of corresponding equivalence classes [X]F and [Y]F .

• In Chapter 4, we give a new representation of Maurer’s theory of discrete
systems. Furthermore, we define a new environment-less and natural
distance ∆̂ on probabilistic discrete systems. We then use the results
on observation compatibility to show the Distance Lemma, which states
that ∆̂ is equivalent to the classical distinguishing advantage ∆. Finally,

3



1. Introduction

we provide a new environment-less perspective on the optimal winning
probability of a certain type of probabilistic discrete games and also
show an equivalence to the conventional (environment-based) definition.

• In Chapter 5, we generalize the notion of neutralizing constructions
of [13]. Using the new distance ∆̂, we then show a new indistinguisha-
bility amplification theorem in an elementary fashion. Said theorem
generalizes the Product Theorem of [13].
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Chapter 2

Preliminaries

2.1 Notation
The natural numbers (or non-negative integers) are denoted by N = {0, 1, . . .}.
The integers, rationals, and reals are denoted by Z, Q, and R, respectively,
and R≥0 := {x | x ∈ R, x ≥ 0}. For n ∈ N, Zn denotes the set {0, . . . , n − 1}
and ⊕n denotes addition modulo n in Zn. Moreover, for n ∈ N, we write [n]
to denote the set {1, 2, . . . , n}, with the convention [0] = ∅.

The power set (or, the set of subsets) of a set X is denoted by P(X ). The
symmetric difference of two sets A and B is defined as A4B := A∪B−A∩B.

The Cartesian product of two sets A and B is denoted by A×B. The n-fold
Cartesian product A× · · · ×A is denoted by An. The value at the i-th index
of an element a = (a1, . . . , an) ∈ An is denoted by ai. For a set A with 0 ∈ A,
the hamming weight hw(a) of an element a ∈ An is defined by the number of
indices with non-zero values.

A (total) function from X to Y is a binary relation f ⊆ X × Y such that
for every x ∈ X, there exists a unique y ∈ Y with (x, y) ∈ f . We usually
write f(x) = y instead of (x, y) ∈ f . Anonymous functions are described by a
mapping x 7→ fx for an expression fx involving x.

The set of (total) functions from X to Y is denoted by Y X , and Y X
= ⊆ Y X

denotes the set of constant functions, i.e., functions f : X → Y for which
there exists y ∈ Y such that f(x) = y for all x ∈ X. Moreover, we denote
the domain of a function f ∈ Y X by dom(f). A partial function f from X
to Y , denoted by f : X 7→ Y , is a total function from X ′ to Y for some
X ′ ⊆ X. Y ⊆X denotes the set of all partial functions from X to Y . The
support of a function f : X → Y with 0 ∈ Y is denoted by supp(f), i.e.,
supp(f) := {x | x ∈ X, f(x) 6= 0}. The preimage (or inverse image) of a
function f : X → Y for y ∈ Y is the set of all elements that f maps to
y, i.e., f−1(y) := {x | x ∈ X, f(x) = y}. Function composition is denoted
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2. Preliminaries

by the symbol ◦, i.e., for (partial) functions f : Y → Z and g : X → Y ,
f ◦ g is the (partial) function x 7→ f(g(x)) from X to Z. For three functions
f : A → B, g : A → B, and op : B → C, we define op(f, g) : A → C by
a 7→ op(f(a), g(a)). The functions (a, b) 7→ a and (a, b) 7→ b are denoted by
left and right, respectively.

The Z-restriction of a function f : X → Y , denoted by f∩[Z], is the function
from X ∩ Z to Y with f∩[Z](x) = f(x) for all x ∈ X ∩ Z. We will some-
times describe a set Z for an Z-restriction by a pattern. For example, the
Z-restriction for Z = {(x1, . . . , xk) | (x1, . . . , xk) ∈ X,x2 = 3} is denoted by
f∩[( ,3,...)]. In such patterns, the underscore is used to denote an arbitrary
symbol.

A (U -indexed) tuple over X is a partial function f : U 7→ X over an index
set U . We will often denote a tuple by 〈xj〉j∈Λ with the understanding that
dom(f) = Λ and f(j) = xj for j ∈ Λ. We call a tuple finite or countable if its
domain is finite or countable, respectively.

A multiset over A is a partial function M : A 7→ N. We represent multi-
sets in set notation, e.g., M = {(a, 2), (b, 7)} denotes the multiset M with
domain {a, b}, M(a) = 2, and M(b) = 7. The cardinality |M | of a multiset is∑
a∈dom(M)M(a). The union ∪, intersection ∩, sum +, and difference − of two

multisets is defined by the pointwise maximum, minimum, sum, and differ-
ence, respectively. Finally, the symmetric difference M4M ′ of two multisets
is defined by M ∪M ′ −M ∩M ′.

2.2 Discrete Probability and Statistical Distance

Definition 2.1. A discrete random experiment is a pair E = (Ω,Pr), for
a non-empty set Ω called the sample space, and a probability measure Pr :
P(Ω)→ R≥0 such that Pr(Ω) = 1 and for every event E ⊆ Ω we have

Pr(E) =
∑
e∈E

Pr({e}).

Definition 2.2. For a given sample space Ω, a random variable over X is a
function X : Ω→ X .

Notation 2.3. A predicate involving random variables X1, . . . ,Xk defines the
event E ⊆ Ω containing all ω ∈ Ω for which the predicate is true.

For example, we write X = Y as a short-hand for the event

{ω | ω ∈ Ω, X(ω) = Y(ω)}.

6



2.3. Order Theory

Definition 2.4. The probability distribution X : X → R≥0 of a random
variable X is defined as follows:

X(x) := Pr(X = x) = Pr({ω | ω ∈ Ω,X(ω) = x}) =
∑
ω∈Ω

X(ω)=x

Pr({ω}).

One can understand a probability distribution X as a specification for a ran-
dom variable (within some universe).
Notation 2.5. We write X ∼ X to denote that the distribution of the random
variable X is X.

Definition 2.6. The events E1, . . . , Ek ⊆ Ω are independent if Pr(∩i∈[k]E
′
i) =∏

i∈[k] Pr(E′i) for all E′1, . . . , E′k with E′i ⊆ Ei. Analogously, the random vari-
ables X1, . . . ,Xk are independent if the events {X1 = x1}, . . . , {Xk = xk} are
independent for all x1, . . . , xk.

Definition 2.7. The statistical distance (or total variation distance) of two
probability distributions X and Y over the same countable set X is defined
by

δ(X,Y) := 1
2
∑
x∈X
|X(x)−Y(x)|.

The following fact is easily verified and thus stated without proof.

Fact 2.8. For any two probability distributions X and Y over the same count-
able set X we have

δ(X,Y) =
∑
x∈X

max(0,X(x)−Y(x))

=
∑
x∈X

max(0,Y(x)−X(x))

= 1−
∑
x∈X

min (X(x),Y(x)).

Definition 2.9. Bernoulli(p) : {0, 1} → R≥0 for p ∈ [0, 1] denotes the proba-
bility distribution defined by

Bernoulli(p)(x) :=
{
p if x = 1
1− p if x = 0

2.3 Order Theory

Definition 2.10 (Preorder, Partial Order, Total Order). On a given set A,
we define the following types of binary relations:

7



2. Preliminaries

• A preorder is a binary relation R ⊆ A×A that is reflexive and transitive.

• A partial order is an antisymmetric preorder.

• A total order is a partial order such that for every (a, b) ∈ A×A either
(a, b) ∈ R or (b, a) ∈ R.

Often, we will denote a binary relation R ⊆ A×A by the symbol ≤ and write
a ≤ b if and only if (a, b) ∈ R. Moreover, we write a ≥ b to denote b ≤ a.

Definition 2.11. A partially ordered set (X ,≤) is a

• meet-semilattice if the greatest lower bound (or meet, or infimum) of any
two-element set {a, b} ⊆ X exists. Unless stated otherwise, the greatest
lower bound of {a, b} ⊆ X is denoted by inf(a, b) and the greatest lower
bound of a set A ⊆ X is denoted by inf A.

• join-semilattice if the least upper bound (or join, or supremum) of any
two-element set {a, b} ⊆ X exists. Unless stated otherwise, the least
upper bound of {a, b} ⊆ X is denoted by sup(a, b) and the least upper
bound of a set A ⊆ X is denoted by supA.

• lattice if it is both a meet-semilattice and a join-semilattice.

2.4 Algebra

Definition 2.12. A set M with a (closed) binary operation + is called a
magma. Moreover,

• a magma is commutative if the binary operation + is commutative, and

• a magma is cancellative if a + b = a + c or b + a = c + a implies b = c
for all a, b, c ∈M.

Definition 2.13. A monoid is a magmaM with associative binary operation
+ and an identity element 0 ∈M.

Definition 2.14. A magma M is called a quasigroup if for every x, y ∈ M
there exist unique xr, xl ∈M such that x+ xr = y and xl + x = y.

Definition 2.15. A monoid M is called a group if for every element a ∈ M
there exists −a ∈ M such that a + (−a) = 0. The element −a is called the
inverse of a.

Definition 2.16. For a monoid (M,+, 0) the algebraic preorder +≤ is defined
by

a +≤ b if and only if ∃c ∈M : a+ c = b.

8



2.4. Algebra

In the following, we define so-called refinement monoids which will be crucial
for many statements made in Chapter 3. Refinement monoids have been
introduced independently by Dobbertin [4] and Grillet [5]. Similar properties
have been discussed even earlier, for example in Tarski’s work on Cardinal
algebras [16].

Definition 2.17. A commutative monoid (M,+, 0) has the refinement prop-
erty if for any a1, a2, b1, b2 ∈ M with a1 + a2 = b1 + b2 there exist elements
c1,1, c1,2, c2,1, c2,2 ∈M such that ai = ci,1+ci,2 and bi = c1,i+c2,i for i ∈ {1, 2}.

A refinement monoid is a commutative monoid with the refinement property.

Example 2.18. The following magmas are refinement monoids:

(i) Any commutative group (G,+, 0), e.g., (Zn,⊕n, 0) or (Z,+, 0).

(ii) (N,+, 0), (Q≥0,+, 0), and (R≥0,+, 0).

(iii) ({0, 1}, ?, 0) with a ? b = max(a, b).

The magmas (i) and (ii) are cancellative. Observe moreover that for (ii) and
(iii), the algebraic preorder +≤ is a total order.

The following lemma is well-known and can be proved by induction.

Lemma 2.19. Let (M,+, 0) be a refinement monoid. For any a1, . . . , am ∈
M and b1, . . . , bn ∈M with ∑

i∈[m]
ai =

∑
n∈[n]

bi,

there exists a set {ci,j}i∈[m],j∈[n] ⊆M such that∑
j∈[n]

ci,j = ai for all i ∈ [m], and
∑
i∈[m]

ci,j = bi for all j ∈ [n].

We prove three basic lemmas about commutative monoids with the algebraic
preorder.

Lemma 2.20. If (M,+, 0) is a commutative monoid, then for any a, a′, b, b′ ∈
M such that a +≤ a′ and b +≤ b′ we have

a+ b +≤ a′ + b′.

Proof. Since a +≤ a′ there exists a′′ ∈M such that a+ a′′ = a′. Analogously,
there exists b′′ ∈ M such that b + b′′ = b′. Thus, by commutativity and
associativity we have (a+ b) + (a′′ + b′′) = (a+ a′′) + (b+ b′′) = a′ + b′, which
implies a+ b +≤ a′ + b′.

9



2. Preliminaries

Lemma 2.21. If (M,+, 0) is a commutative monoid such that +≤ is a total
order, then

inf(a, c) + inf(b, d) +≤ inf(a+ b, c+ d)

for any a, b, c, d ∈M.

Proof. Since +≤ is a total order, we have inf(x, y) = x if and only if x +≤ y
and otherwise inf(x, y) = y. Assume w.l.o.g. that a+ b +≤ c+ d.

inf(a, c) + inf(b, d) +≤ a+ inf(b, d) +≤ a+ b = inf(a+ b, c+ d).

The first step follows from the fact that either inf(a, c) = a or inf(a, c) = c.
In the former case, the first step is trivial. In the latter case we have c +≤ a,
implying that there exists c′ ∈ M such that c + c′ = a. The second step
follows analogously.

Lemma 2.22. If (M,+, 0) is a commutative monoid such that +≤ is a total
order, then for any finite sets A,B ⊆M we have

inf A+ inf B = inf(A+B),

where A+B = {(a+ b) | (a, b) ∈ A×B}.

Proof. First, observe that as +≤ is a total order, the infimum of finite sets
always exists and is actually a minimum.

As inf A is a lower bound of A, and inf B is a lower bound of B, it is easy to
see that inf A+ inf B is a lower bound of A+B. As inf(A+B) is the greatest
lower bound, we have inf A+ inf B +≤ inf(A+B).

Since the infimum is a minimum, we have inf A+ inf B = a∗+ b∗ for (a∗, b∗) ∈
A×B. Thus, inf A+ inf B≥+ inf(A+B), concluding the proof.

10



Chapter 3

Intersection of Finite Distributions

In this chapter, we discuss elementary properties of (finite) distributions, in
particular the similarity of distributions. We use a notion of distribution which
is essentially an abstract finite measure: For a commutative monoid M, we
call any function assigning a weight ω ∈M to every element of some set A a
distribution. The weight of a set A ⊆ A is simply defined as the sum of each
element’s weight.

We start by assuming very little structure on the monoid M. For many
statements, however, more structure is necessary. We attempt to assume only
as much structure as required for each statement we make. We note that the
monoids (N,+, 0), (Q≥0,+, 0), and (R≥0,+, 0) satisfy all assumptions made
in this chapter.

The main contribution of this chapter is the introduction and discussion of a
new property called observation compatibility, which relates the abstract in-
distinguishability of two distributions X and Y with the intersection of corre-
sponding equivalence classes [X]F and [Y]F . It is then shown how observation-
compatible pairs (A,F) can be constructed.

We focus on the treatment of finite distributions and do not go into the realm
of convergence, (continuous) measure theory and σ-algebras.

3.1 Finite Distributions

3.1.1 Definitions and Notation

Definition 3.1 (Finite Distribution). For a commutative monoid (M,+, 0),
a finite M-weighted distribution over A (or an A-valued distribution) is a
function

X : A →M

11



3. Intersection of Finite Distributions

with finite support.

We call X(a) the weight of an element a ∈ A. Moreover, for any distribution
X : A →M we define the function X̂ : P(A)→M by1

X̂(A) :=
∑
a∈A

X(a),

and we call X̂(A) the weight of the set A ⊆ A. Finally, we define the weight
of X by |X| := X̂(A) = ∑

a∈AX(a) and we say that X is weight-ω if ω = |X|.

Definition 3.2. For a commutative monoid (M,+, 0) and a set A, let ΓAM ⊆
MA be the set of all A-valued M-weighted distributions.

Remark 3.3. The concept of abstract (non-numerical) measures appears in a
similar form in Tarski’s work on Cardinal algebras [16]. In [3], applications of
such abstract measures are discussed, for example for probability theory. It
is shown in [7] that some abstract measures are essentially equivalent (in an
isomorphism-sense) to a numerical measure.

Many statements over distributions are only true if the monoid M satisfies
further properties, such as

• M is cancellative or a refinement monoid.

• (M, +≤) is a partially ordered set (poset), a meet-semilattice, a lattice,
a distributive (semi-)lattice, or a totally ordered set.

Definition 3.4 (Transformation). For a distribution X : A →M and a par-
tial function f : A 7→ B, the f -transformation of X is the B-valued distribution
defined by

f(X) := X̂ ◦ f−1.

Note that the A-restriction X∩[A] of a distribution X is the id-transformation
of X, where id is the identity function a 7→ a with domain A ∩A.
Notation 3.5. We often transform a distribution X by prepending or append-
ing constant values to the elements of a distribution’s domain. We write, for
example, (a,X, b) to denote the distribution

(a,X, b) := f(a,·,b)(X), where f(a,·,b)(x) := (a, x, b).

Definition 3.6 (Evaluation). For a function-valued distribution X : Z⊆Y →
M and y ∈ Y, the y-evaluation of X is the Z-valued distribution defined as

X↓y := fy(X),

where fy : Z⊆Y 7→ Z is the partial function g 7→ g(y).
1For an infinite set A, the sum

∑
a∈A X(a) is defined as

∑
a∈A∩supp(X) X(a).

12



3.1. Finite Distributions

3.1.2 Basic Properties of Distributions
We start by proving two elementary lemmas about distributions. The first
lemma shows what structure of the monoid M is inherited by the set of
distributions ΓAM. The second lemma states that the joint distribution of
arbitrary distributions exist, as long as they all have the same weight.

Lemma 3.7. (ΓAM,+, 0) is a commutative monoid where + is pointwise
addition and 0 is the constant 0 function. Moreover,

(i) the pointwise algebraic preorder is the algebraic preorder +≤ over ΓAM.

(ii) the relation X ≤|·| Y :⇐⇒ |X| +≤ |Y| is a preorder over ΓAM.

(iii) for every X ∈ ΓAM we have ω +≤ |X| if there exist a weight-ω distribu-
tion Xω ∈ ΓAM such that Xω

+≤X. In case M is a refinement monoid
the other direction (”only if”) is true as well.

Proof. We only prove (iii), as the other claims are easy to verify. Assume
there exists a weight-ω distribution Xω ∈ ΓAM such that Xω

+≤X. Thus
there exists X′ ∈ ΓAM such that Xω + X′ = X, implying |X| = |Xw + X′| =
|Xw|+ |X′| = ω + |X′| ≥+ ω.

For the other direction, assume ω +≤ |X|, which implies that there exists
ω′ ∈ M such that ω + ω′ = |X|. By invoking Lemma 2.19 with (ω, ω′)
and (X(a1), . . . ,X(ak)) for {a1, . . . , ak} = supp(X) we obtain a weight-ω dis-
tribution Xω ∈ ΓAM and a distribution X′ ∈ ΓAM such that Xω + X′ = X,
implying Xω

+≤X.

Lemma 3.8. Assume M is a refinement monoid and let 〈Xj〉j∈Λ be a finite
tuple of weight-ω distributions over A, i.e., 〈Xj〉j∈Λ ∈ (ΓAM)Λ and |Xj | = ω

for j ∈ Λ. There exists a tuple-valued weight-ω distribution X : AΛ → M,
such that X↓j = Xj for all j ∈ Λ.

Proof (sketch). The claim follows immediately from the refinement property
via Lemma 2.19 and by induction over |Λ|.

3.1.3 Intersection of Distributions
For M-weighted distributions such that (M, +≤) is a meet-semilattice, we
define the intersection of two distributions as follows.

Definition 3.9. Assume (M, +≤) is a meet-semilattice. The intersection
X uY of two distributions X : A → M and Y : A → M is the distribution
defined as the pointwise infimum, i.e.,

X uY := inf(X,Y).

13



3. Intersection of Finite Distributions

Moreover, we call |X uY| the intersection weight of X and Y, and use it as
a similarity measure between two distributions.

The following proposition is easy to verify and thus stated without proof.

Proposition 3.10. If (M, +≤) is a meet-semilattice, then (ΓAM, +≤) is a
meet-semilattice with pointwise meet u.

3.1.4 Basic Lemmas about the Intersection Weight u
We prove four elementary lemmas about the intersection weight of distribu-
tions. The first two lemmas (Lemmas 3.11 and 3.12) are mostly of technical
interest and used two prove more involved statements.

Lemma 3.11. Assume (M, +≤) is a meet-semilattice. Let X and Y be dis-
tributions with the same domain A. For an arbitrary partition 〈Ai〉i∈I of A
we have

|X uY| =
∑
i∈I

∣∣∣X∩[Ai] uY∩[Ai]
∣∣∣ .

Proof. This follows immediately from Definition 3.9.

|X uY| =
∑
a∈A

inf(X(a),Y(a)) =
∑
i∈I

∑
a∈Ai

inf(X(a),Y(a))

=
∑
i∈I

∑
a∈Ai

inf
(
X∩[Ai](a),Y∩[Ai](a)

)
=
∑
i∈I

∣∣∣X∩[Ai] uY∩[Ai]
∣∣∣ .

Lemma 3.12. Assume M is a refinement monoid and (M, +≤) is a meet-
semilattice. Let X and Y be distributions with the same domain A. For any
ω ∈M the following two statements are equivalent:

(i) ω +≤ |X uY|

(ii) There exists a weight-ω distribution Eω : A → M such that Eω
+≤X

and Eω
+≤Y.

Proof. Recall Definition 3.9. We prove both directions separately.

• =⇒. Assume ω +≤ |X uY|. As M is a refinement monoid, Lemma 3.7
implies that there exists a weight-ω distribution Eω with domain A such
that Eω

+≤X uY. Observe that X uY +≤X and X uY +≤Y, which
implies the claim by transitivity.

14



3.1. Finite Distributions

• ⇐=. Let Eω be as described in (ii). Since Eω is a lower bound of {X,Y}
we have Eω

+≤X uY and thus ω +≤ |X uY|.

The following lemma states that the intersection weight can only increase
under an f -transformation.

Lemma 3.13. Assume (M, +≤) is totally ordered. Let X and Y be distribu-
tions with the same domain A. Then, for any total function f : A → B,

|X uY| +≤ |f(X) u f(Y)| ,

and |X uY| = |f(X) u f(Y)| if f is injective.

Proof.

|f(X) u f(Y)| =
∣∣∣(X̂ ◦ f−1) u (Ŷ ◦ f−1)

∣∣∣ =
∑
b∈B

inf
(
X̂(f−1(b)), Ŷ(f−1(b))

)

=
∑
b∈B

inf

 ∑
a∈f−1(b)

X(a),
∑

a∈f−1(b)
Y(a)


≥+

∑
b∈B

∑
a∈f−1(b)

inf (X(a),Y(a))

≥+

∑
a∈A

inf (X(a),Y(a)) = |X uY| ,

where we have used Lemma 2.21 for the first inequality and the fact that f is
total for the last inequality. Observe that if f is injective, the inequalities can
be replaced with equalities.

Given multiple pairs (Xj ,Yj) of distributions, the following lemma states that
one can construct joint distributions X and Y with an intersection weight at
least as large as the infimum of all intersection weights |Xj uYj |. If (M, +≤)
is totally ordered, it is easy to see that the intersection weight of X and Y
cannot possibly be larger, thus we have actually an equality.

Lemma 3.14. AssumeM is a cancellative refinement monoid and (M, +≤) is
a meet-semilattice. Let 〈(Xj ,Yj)〉j∈Λ be a finite tuple of pairs of distributions,
where weight-ω Xj and weight-ω′ Yj have domain Aj. Let A := ∪j∈ΛAj.

There exists a weight-ω distribution X with domain AΛ where X↓j = Xj and
a weight-ω′ distribution Y with domain AΛ where Y↓j = Yj, such that

|X uY| ≥+ infj∈Λ |Xj uYj |

and if (M, +≤) is totally ordered we have

|X uY| = infj∈Λ |Xj uYj | .

15



3. Intersection of Finite Distributions

Proof. Let ωinf := infj∈Λ |Xj uYj |. For every j ∈ Λ, we split the distributions
Xj and Yj according to Lemma 3.12 such that

Xj = Ej
ωinf + Xj

′ and Yj = Ej
ωinf + Yj

′.

Let Eωinf be a weight-ωinf distribution with domain AΛ such that Eωinf ↓j =
Ej

ωinf for every j ∈ Λ. Such a distribution exists due to Lemma 3.8. Moreover,
let X′ and Y′ be analogous distributions2.
Let X and Y be distributions defined by

X := Eωinf + X′ and Y := Eωinf + Y′.

Lemma 3.12 implies |X uY| ≥+ ωinf , and it is easy to verify that X↓j = Xj

as well as Y↓j = Yj as desired.
Observe that if (M, +≤) is totally ordered, Lemma 3.13 is applicable and we
have |X uY| +≤

∣∣∣X↓j uY↓j
∣∣∣ = |Xj uYj | for all j ∈ Λ. As (M, +≤) is a meet-

semilattice it follows that |X uY| +≤ infj∈Λ |Xj uYj | = ωinf , which implies
|X uY| = ωinf by antisymmetry.

3.2 Observing Distributions of Objects
In this section, we consider the following setting. Objects of a set A may be
observed by one function f of a set F of total functions from A to some set
B. The interpretation is that for any object a ∈ A, an observer may choose a
function f ∈ F arbitrarily and then observes f(a).
Moreover, we assume an equivalence relation ≡F on ΓAM such that

X ≡F X′ ⇐⇒ ∀f ∈ F : f(X) = f(X′), (3.1)

and let [X]F := {X′ | X′ ∈ ΓAM, X ≡F X′} denote the equivalence class of
X ∈ ΓAM.
Remark 3.15. It is not necessary to fix the set F first and to define the equiv-
alence relation ≡F such that (3.1) is satisfied with respect to F . A more
elementary approach appears to be to first define the equivalence relation and
to let F be the induced set such that (3.1) is satisfied. In general, however,
both approaches are possible.

3.2.1 Observation Compatibility

Definition 3.16. The intersection weight of two sets of distributions X ,Y ⊆
ΓAM is defined as

|X u Y| := sup
(X,Y)∈X×Y

|X uY| .

2Observe that all X′j (and all Y′j) are of the same weight, because all Xj are weight-ω
and M is cancellative.
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3.2. Observing Distributions of Objects

Remark 3.17. The intersection weight |X u Y| of two sets X ,Y ⊆ ΓAM may
not exist. However, in most cases of our interest, not only does the supremum
exist, but the supremum is actually a maximum, i.e., there exist (X,Y) ∈
X × Y such that |X uY| = |X u Y|.

Proposition 3.18. Assume (M, +≤) is totally ordered and F ⊆ BA. Let
(X,Y) ∈ ΓAM × ΓAM be arbitrary. For any (X′,Y′) ∈ [X]F × [Y]F we have∣∣X′ uY′

∣∣
+≤ inf

f∈F
|f(X) u f(Y)| ,

and thus, if |[X]F u [Y]F | exists, |[X]F u [Y]F | +≤ inff∈F |f(X) u f(Y)|.

Proof. Since the support of both X and Y is finite and +≤ is a total order,
there exists f∗ ∈ F such that |f∗(X) u f∗(Y)| = inff∈F |f(X) u f(Y)|.

Let (X′,Y′) ∈ [X]F × [Y]F be arbitrary. We have∣∣X′ uY′
∣∣

+≤
∣∣f∗(X′) u f∗(Y′)∣∣ = |f∗(X) u f∗(Y)| = inf

f∈F
|f(X) u f(Y)| .

The first step follows from Lemma 3.13. The second step follows from the fact
that X ≡F X′ and Y ≡F Y′ by assumption.

Definition 3.19. Assume (M, +≤) is totally ordered. For a set A and a set
F ⊆ BA, the pair (A,F) is called observation-compatible if for any (X,Y) ∈
ΓAM × ΓAM we have

|[X]F u [Y]F | = inf
f∈F
|f(X) u f(Y)| ,

where the equivalence class [·]F on ΓAM is defined via the equivalence relation
≡F as above.

Moreover, we call (A,F) existentially observation-compatible if there exists a
pair (X′,Y′) ∈ [X]F × [Y]F such that |X′ uY′| = inff∈F |f(X) u f(Y)|.

Remark 3.20. It is easy to see that existential observation compatibility implies
observation compatibility.

Example 3.21. Assume (M, +≤) is totally ordered. Let A be a non-empty
set and let F ⊆ BA such that there exists an injective function f∗ ∈ F . Then
we have for any (X,Y) ∈ ΓAM × ΓAM

|X uY| = |f∗(X) u f∗(Y)| ≥+ inf
f∈F
|f(X) u f(Y)| .

The first step follows via Lemma 3.13 since f∗ is injective. Moreover, by
Proposition 3.18 and antisymmetry we conclude

|X uY| = inf
f∈F
|f(X) u f(Y)| .

Hence, (A,F) is existentially observation-compatible.
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3. Intersection of Finite Distributions

Example 3.22. Let A = {00, 01, 10}, F = {left, right}, and M = R≥0.
Moreover, let X(00) = 0 and X(01) = X(10) = 1. Finally, let Y(00) = 2 and
Y(01) = Y(10) = 0. It is easy to see that inff∈F |f(X) u f(Y)| = 1. However,
we have [X]F = {X} and [Y]F = {Y}, thus |[X]F u [Y]F | = 0. Thus, (A,F)
is not observation-compatible. Note that the pair (A′,F) for the extended set
A′ = A ∪ {11} is observation-compatible (see Lemma 3.24 below).

3.2.2 Lifting Observation Compatibility

In this section, we describe natural ways to lift observation compatibility,
i.e., to construct an (existentially) observation-compatible pair (A,F) from
(existentially) observation-compatible pairs (Ai,Fi).

The following lifting lemma states the simple fact that constant functions have
no influence on observation compatibility.

Lemma 3.23. Assume (M, +≤) is totally ordered. A pair (A,F) is (existen-
tially) observation-compatible for a non-empty set F ⊆ BA if and only if the
pair (A,F ∪{c}) is (existentially) observation-compatible, where c : A → B is
a constant function.

Proof (sketch). It is easy to see that for any f ∈ F we have

|f(X) u f(Y)| +≤ |c(X) u c(Y)| = inf(|X| , |Y|).

Thus, inff∈F |f(X) u f(Y)| = inff∈(F∪{c}) |f(X) u f(Y)|. The claim follows
by observing that the equivalence relation ≡(F∪{c}) is (equal to) ≡F .

A natural way to lift observation compatibility given observation-compatible
pairs (Ai,Fi) is by constructing a new set of objects A as the cross product
A1× · · ·×Ak and a corresponding set F which allows to observe an arbitrary
index i ∈ [k] of a tuple with an arbitrary function fi ∈ Fi. The following
lemma states this for indexed tuples.

Lemma 3.24. AssumeM is a cancellative refinement monoid and (M, +≤) is
totally ordered. Let 〈(Aj ,Fj)〉j∈Λ be a finite tuple of existentially observation-
compatible pairs. Then the pair (A,F) is existentially observation-compatible
for A = {a | dom(a) = Λ, ∀j ∈ Λ : a(j) ∈ Aj} and

F := {f | j ∈ Λ, fj ∈ Fj , f(a) := fj(a(j))}.

Proof. By the definition of F we have

inf
f∈F
|f(X) u f(Y)| = inf

j∈Λ
inf
fj∈Fj

∣∣∣fj(X↓j) u fj(Y↓j)∣∣∣ .
18



3.2. Observing Distributions of Objects

Since (Aj ,Fj) is existentially observation-compatible, there exist for every
j ∈ Λ distributions X′j ∈ [X↓j ]Fj and Y′j ∈ [Y↓j ]Fj such that

inf
j∈Λ

inf
fj∈Fj

∣∣∣fj(X↓j) u fj(Y↓j)∣∣∣ = inf
j∈Λ

∣∣∣X′j uY′j
∣∣∣ .

Invoking Lemma 3.14 with the tuple 〈(X′j ,Y′j)〉j∈Λ, we obtain a pair of distri-
butions (X′,Y′) ∈ [X]× [Y] such that |X′ uY′| = infj∈Λ

∣∣∣X′j uY′j
∣∣∣. Hence,∣∣X′ uY′

∣∣ = inf
f∈F
|f(X) u f(Y)| ,

which concludes the proof.

One might conjecture that observation compatibility is inherited in the same
fashion if we allow to project all indices at once, i.e., we define the set F by

F :=
{
f | f(a) := 〈fj(a(j))〉j∈Λ for fj ∈ Fj

}
.

This conjecture is false, as the following example shows.

Example 3.25. LetM = R≥0, A1 = {0, 1}, F1 = {id}, A2 = {00, 01, 10, 11},
and F2 = {right, left}. (Ai,Fi) is existentially observation-compatible for i ∈
{1, 2} due to id ∈ F1 being injective and Lemma 3.24. We define A := A1×A2
and F := {f | f1 ∈ F1, f2 ∈ F2, f(a1, a2) = (f1(a1), f2(a2))}.

Consider the distributions X and Y which have support {(0, 10), (1, 11)} and
{(0, 00), (1, 10)}, respectively, and weight 1 for every element in their support.

It is easy to verify that

inf
f∈F
|f(X) u f(Y)| = 1.

Convince yourself that [X]F = {X} and [Y]F = {Y}, thus

sup
(X′,Y′)∈[X]F×[Y]F

∣∣X′ uY′
∣∣ = 0.

Hence, (A,F) is not observation-compatible.

Observe that the set F from Example 3.25 can be extended to include all
F1-adaptive functions, i.e., functions mapping (a1, a2) to (f1(a1), f2(a2)), but
where the choice of f2 depends on the value of f1(a1). If this new set is denoted
by F ′, we have

inf
f∈F ′

|f(X) u f(Y)| = 0.

Thus, (A,F ′) might be observation-compatible. In particular, one might con-
jecture that observation compatibility is inherited recursively if we allow adap-
tive projections in one direction (e.g., from left to right). In general, however,
this conjecture is false as well, as the following example shows.
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Example 3.26. Let M = R≥0, A1 = A2 = {00, 01, 10, 11}, and F1 = F2 =
{right, left}. (Ai,Fi) is existentially observation-compatible by Lemma 3.24
for i ∈ {1, 2}. We define A := A1 ×A2 and

F := {f | f1 ∈ F1, v2 ∈ F{0,1}2 , f(a1, a2) := (f1(a1), (v2 ◦ f1)(a1)(a2))}.

Consider the distributions X and Y which have support {(00, 11), (10, 00)}
and {(00, 10), (01, 01)}, respectively, and weight 1 for every element in their
support.

It is easy to verify that

inf
f∈F
|f(X) u f(Y)| = 1

as well as [Y]F = {Y} and [X]F = {X}. Thus,

sup
(X′,Y′)∈[X]F×[Y]F

∣∣X′ uY′
∣∣ = 0.

Hence, (A,F) is not observation-compatible.

Recall that right denotes the mapping (a1, a2) 7→ a2.
Notation 3.27. We define the following notation for distributions X over a
cross product A1 ×A2 for any a1 ∈ A1:

X↑a1 := right
(
X∩[(a1, )]

)
.

Thus, X↑a1 is a distribution over A2.

The following lemma demonstrates another lifting method. The intuition is
that the constructed objects A are pairs of the form (l, al) such that al ∈ Al.
The functions F are such that (l, fl(al)) may be observed for an arbitrary
function fl ∈ Fl. A possible interpretation is that l indicates the type of al,
and an observer first observes this type, and then (depending on the value of
l) chooses a function fl fitting to type l to observe al.

Lemma 3.28. Assume (M, +≤) is totally ordered. Let 〈(Al,Fl)〉l∈L be a
tuple of existentially observation-compatible pairs. We define the sets A :=
{(l, al) | l ∈ L, al ∈ Al}, FAL := {v ∈ (∪l∈LFl)L ,∀l ∈ L : v(l) ∈ Fl}, as well
as

F := {f | v ∈ FAL , f(l, al) := (l, v(l)(al))} .

Then, (A,F) is existentially observation-compatible.
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3.2. Observing Distributions of Objects

Proof.

inf
f∈F
|f(X) u f(Y)| = inf

f∈F

∑
l∈L

∣∣∣f(X)∩[(l, )] u f(Y)∩[(l, )]
∣∣∣

= inf
v∈FAL

∑
l∈L

∣∣∣(l, v(l)(X↑l)
)
u
(
l, v(l)(Y↑l)

)∣∣∣
= inf

v∈FAL

∑
l∈L

∣∣∣v(l)(X↑l) u v(l)(Y↑l)
∣∣∣

=
∑
l∈L

inf
fl∈Fl

∣∣∣fl(X↑l) u fl(Y↑l)∣∣∣ .
The first step follows from the Lemma 3.11. The second step follows from
the definition of F . For the third step we used that all values in the support
of
(
l, v(l)(X↑l)

)
and

(
l, v(l)(Y↑l)

)
have the form (l, ), thus removing this

first index does not change the intersection weight. The last step is due to
Lemma 2.22.

For every l ∈ L, the pair (Al,Fl) is existentially observation-compatible and
X↑l as well as Y↑l are distributions over Al. Thus, for every l ∈ L there exist
(X′l,Y′l) ∈ [X↑l]Fl × [Y↑l]Fl such that∑

l∈L
inf
fl∈Fl

∣∣∣fl(X↑l) u fl(Y↑l)∣∣∣ =
∑
l∈L

∣∣X′l uY′l
∣∣ .

Finally, we define3 X′ := ⋃
l∈L (l,X′l) and Y′ := ⋃

l∈L (l,Y′l). It is easy to
check that (X′,Y′) ∈ [X]F × [Y]F . Invoking Lemma 3.11 we obtain∣∣X′ uY′

∣∣ =
∑
l∈L

∣∣(l,X′l) u (l,Y′l)∣∣ =
∑
l∈L

∣∣X′l uY′l
∣∣ = inf

f∈F
|f(X) u f(Y)| ,

which concludes the proof.

Finally, we state the following conjecture, describing a more general adaptive
lifting of observation compatibility.

Conjecture 3.29. Let (A1,F1) and (A2,F2) be existentially observation-
compatible, respectively, and F1 ⊆ BA1

1 ,F2 ⊆ BA2
2 . We define

A := A1 ×A2, and

F :=
{
f | f1 ∈ F1, v2 ∈ FB1

2 , f(a1, a2) := (f1(a1), (v2 ◦ f1)(a1)(a2))
}

∪
{
f | v1 ∈ FB2

1 , f2 ∈ F2, f(a1, a2) := ((v1 ◦ f2)(a2)(a1), f2(a2))
}
.

Then, (A,F) is existentially observation-compatible.
3Recall that functions are defined as sets, thus taking the union of functions with disjoint

domain yields another function.
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3.3 Meet Anti Triangle Inequality

In this section, we briefly discuss a meet anti triangle inequality over equiva-
lence classes [·]F of distributions. Such an inequality is motivated by the fact
that it would imply an actual triangle inequality for a natural distance notion
defined over sets of distributions, proving that the distance is a pseudo-metric.

For the following lemma, we write x ∧ y and x ∨ y instead of inf(x, y) and
sup(x, y) to improve readability.

Lemma 3.30. If (M, +≤) is totally ordered, we have for any a, b, c ∈M:

(a ∧ c) + b≥+(a ∧ b) + (b ∧ c).

Proof. It is easy to see that a∧ c≥+ (a ∧ b)∧ (b ∧ c) and b≥+ (a ∧ b)∨ (b ∧ c).
Thus,

(a ∧ c) + b≥+ ((a ∧ b) ∧ (b ∧ c)) + ((a ∧ b) ∨ (b ∧ c))
= (a ∧ b) + (b ∧ c).

The last step follows from the fact that (x ∧ y) + (x ∨ y) = x + y for any
x, y ∈M, as +≤ is a total order.

Lemma 3.31. Assume (M, +≤) is totally ordered. Let the pair (A,F) be
observation-compatible. Then for arbitrary X,Y,Z ∈ ΓAM we have

|[X]F u [Y]F |+ |Z| ≥+ |[X]F u [Z]F |+ |[Z]F u [Y]F | .

Proof.

|[X]F u [Y]F |+ |Z| = inf
f∈F
|f(X) u f(Y)|+ |Z|

= inf
f∈F

(|f(X) u f(Y)|+ |f(Z)|)

≥+ inf
f∈F

(|f(X) u f(Z)|+ |f(Z) u f(Y)|)

≥+ inf
f∈F
|f(X) u f(Z)|+ inf

f∈F
|f(Z) u f(Y)|

= |[X]F u [Z]F |+ |[Z]F u [Y]F | .

The first inequality follows from Lemma 3.30.

An interesting problem is to generalize the above statement for general sets
X ,Y,Z, and to replace observation compatibility with a weaker assumption.
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3.4. Interpreting the Intersection Weight

3.4 Interpreting the Intersection Weight
The following lemma provides an interpretation of the intersection weight of
distributions by relating it to the maximum weight of constant tuples over all
joint distributions.

Lemma 3.32. Assume M is a cancellative refinement monoid and (M, +≤)
is a meet-semilattice. Let 〈Xj〉j∈Λ be a finite tuple of weight-ω distributions
Xj ∈ ΓAM. Then4,

sup
X∈ΓAΛM
X↓j=Xj

X̂
(
AΛ

=

)
=
∣∣uj∈ΛXj

∣∣ ,

and there exists X∗ ∈ ΓAΛM with X∗↓j = Xj such that X̂∗(AΛ
=) =

∣∣uj∈ΛXj

∣∣.
Proof. Let X ∈ ΓAΛM with X↓j = Xj be arbitrary. For any j ∈ Λ, a ∈ A we
have5

X(a) +≤X↓j(a) = Xj(a).

Thus, X(a) +≤(uj∈ΛXj)(a), which implies X̂(AΛ
=) +≤

∣∣uj∈ΛXj

∣∣.
By Lemma 3.12 there exists a distribution X′j such that Xj = (uj∈ΛXj) + X′j
for every j ∈ Λ. Let X= ∈ ΓAΛM be with supp(X=) ⊆ AΛ

= and X=(a) :=
(uj∈ΛXj)(a), and let X′ be the joint distribution of 〈X′j〉j∈Λ that exists6 by
Lemma 3.8. We define X∗ := X= + X′. It is easy to see that X∗↓j = Xj for
every j ∈ Λ and we have X̂(AΛ

=)≥+

∣∣uj∈ΛXj

∣∣, which concludes the proof.

Hence, a possible interpretation of the intersection weight in classical probabil-
ity theory is the following. For every random experiment E with a random vari-
able (X,Z1,Z2, . . .), where X ∼ X, there exists another random experiment E ′
with a random variable (X′,Y′,Z′1,Z′2, . . .), such that Y′ ∼ Y, (X′,Z′1,Z′2, . . .)
is distributed exactly like (X,Z1,Z2, . . .) in E , and

PrE ′(X ′ = Y ′) = |X uY| .

Thus, whenever we are considering a random experiment with random variable
X distributed according to (non-ideal) X, we can consider there being an
additional ”shadow” random variable Y that is distributed according to (ideal)
Y, such that with probability |X uY|, the random variables X and Y are
equal.

4Recall that AΛ
= denotes the set of constant functions from Λ to A.

5We let a ∈ A also denote the constant function j 7→ a (with domain Λ).
6Due to cancellativity, all X′j have the same weight.
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3. Intersection of Finite Distributions

An analogous interpretation is often given in terms of statistical distance and
the probability that two random variables are not equal. For probability
distributions X and Y over the same set we have δ(X,Y) = 1− |X uY| due
to Fact 2.8. Thus, Lemma 3.32 implies the following lemma which is known
in the literature as Coupling Lemma.

Lemma 3.33 (Coupling Lemma, Lemma 3.6 of [1]). Let X,Y be probability
distributions over the same set.

(i) For any random experiment E with random variables X ∼ X,Y ∼ Y we
have

δ(X,Y) ≤ PrE(X 6= Y).

(ii) There exists a (joint) distribution Cδ(X,Y) such that for any random
experiment E ′ with a random variable (X,Y) ∼ Cδ(X,Y) we have X ∼
X,Y ∼ Y and

δ(X,Y) = PrE ′(X 6= Y).

We note that the Coupling Lemma is also the main tool of the so-called
Coupling Method, a powerful proof technique which is used for example to
show that certain Markov chains are rapidly mixing (see [1]).

It is tempting to think that with probability |X uY|, the random variable
X is distributed like Y. This is wrong, as the following example shows. Let
X ∈ Γ{H,T}R≥0 be the always-heads probability distribution, i.e., X(H) = 1
and X(T ) = 0, and let Y ∈ Γ{H,T}R≥0 be the uniform coin, i.e., X(H) =
X(T ) = 1

2 . Clearly we have |X uY| = 1
2 . However, since a random variable

X ∼ X never takes on the value T , it is distributed like Y with probability 0.

3.5 Conclusions

We have introduced finite distributions as well as their intersection and proved
various elementary properties of them. Furthermore, we have defined ob-
servation compatibility and shown how one can construct a large class of
observation-compatible pairs via two lifting methods (Lemmas 3.24 and 3.28).

We conclude by discussing some open questions and future work.

• Can some of the statements be further generalized? For example, it is
imaginable that some of the discussed properties are not actually prop-
erties of the distributions over some set A, but can be expressed equiv-
alently as concise and natural properties of the objects A themselves.
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3.5. Conclusions

• What role does adaptivity play for observation compatibility? The con-
jecture is that while adaptivity does not influence the equivalence re-
lation ≡F , it is crucial for the indistinguishability. In particular, unre-
stricted adaptivity seems to be necessary to obtain observation compat-
ibility.

• Is it possible to define (in a meaningful and natural fashion) not only
the intersection weight |X u Y| of two sets of distributions, but actually
the intersection X u Y of sets of distributions together with a weight |·|
of a set of distributions? Moreover, a naturally defined (pseudo-)metric
on sets of distributions might allow to elevate the distance of discrete
systems (see Chapter 4) to a more abstract level.

• What algebraic structure does the intersection weight |X u Y| over pairs
of distribution sets inherit from the meet u? In particular, it seems
that properties similar to a distributive lattice would imply the meet
anti triangle-inequality. Moreover, a property similar to the inclusion-
exclusion principle might be technically useful to prove abstract indis-
tinguishability bounds.

• Is it necessary to generalize the statements made in this chapter for
distributions with infinite support? It seems that at least within the
realm of countable infinity one could reinterpret such distributions as a
sequence of finite distributions.
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Chapter 4

Discrete Systems

In this chapter, we give a new representation of Maurer’s theory of discrete
systems [12] (an extension of the random system framework [9]). Our repre-
sentation differs in two main aspects.

• First, we define discrete systems as inductive objects. Not only is this
inductive view very natural, it seems necessary to take this perspective
to prove many elementary statements over discrete systems. While it is
in principle possible to prove said statements over non-inductive defini-
tions, the taken perspective will still be inductive and thus complicate
the proof unnecessarily.

• Second, we represent probabilistic discrete systems as distributions as
opposed to random variables. This defers the discussion of probabil-
ity theory and random experiments to a later point and allows making
more abstract statements over systems. Note that even though we use
the term probabilistic, the distributions are a priori not probability dis-
tributions, i.e., they do not need (unless explicitly stated) to sum up to
one.

We then use the results of Chapter 3 to show that discrete systems are
observation-compatible with respect to a natural set of functions F that cap-
tures how a system may be observed by environments. This directly im-
plies the Distance Lemma, which states that a newly defined environment-less
pseudo-metric ∆̂ is equal to the classical distinguishing advantage ∆.
Finally, we introduce an environment-less way to reason about the optimal
game winning probability of a certain type of discrete games.

4.1 Deterministic Discrete Systems
We start by introducing recursive domains, which capture the type of a system
(and the type of environments that are compatible to said system). A recursive

27



4. Discrete Systems
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Figure 4.1: Visual representation of a finite recursive domain R = ({◦, /},Y, ψ) within input-
output universe (UI ,UO) = ({◦, •, ., /},N). We have Y(◦) = {1, 2}, Y(/) = {5, 9}, and
ψ(◦, 1) = ψ(/, 9) = a.

domain describes the input and output alphabets at the different states of a
system. Formally, we define it as a triple (X ,Y, ψ), where X is the set of
allowed values for the next input and Y(x) is the set of possible values for the
next output under the input x ∈ X . For any input x ∈ X and corresponding
output y ∈ Y(x), ψ(x, y) is another recursive domain which describes the
subsequent input and output alphabets.

Definition 4.1. For a given input-output universe (UI ,UO), the set A of finite
recursive domains is the smallest set closed under the following rules1:

(i) The empty domain a is a finite recursive domain, i.e., a ∈ A.

(ii) Any triple (X ,Y, ψ) is a finite recursive domain, i.e., (X ,Y, ψ) ∈ A, if
X ⊆ UI is non-empty finite, Y ∈ P(UO)X with non-empty finite Y(x) for
every x ∈ X , and ψ ∈ A⊆X×UO such that dom(ψ) = {(x, y) | x ∈ X , y ∈
Y(x)}.

We call R non-adaptive if it is either the empty domain or if R = (X ,Y, ψ)
and for all x ∈ X , the unary function ψ(x, ·) is constant (i.e., is equal for
all y ∈ Y(x)) and maps to a non-adaptive R′. Otherwise (if R is not non-
adaptive) we call R adaptive.

1The two rules can be expressed equivalently by a single rule if we allow X to be empty in
(ii) and define a := (∅,∅,∅). We choose this representation to make the base case explicit.
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4.1. Deterministic Discrete Systems

const0

00

id

10

flip

01

const1
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Figure 4.2: The four single-query DDS const0, id, flip, and const1.

Example 4.2. Figure 4.1 shows an example of a finite recursive domain R.
Observe that R is adaptive since (for example) ψ(◦, 1) 6= ψ(◦, 2).

In the following, the input-output universe (UI ,UO) is assumed to be given
and is not made explicit.

For a non-empty domain R = (X ,Y, ψ), we call every domain ψ(x, y) for
x ∈ X , y ∈ Y(x) a subdomain of R. It is easy to see that the subdomain
relation is well-founded (within a given universe (UI ,UO)). Thus, one can
prove statements of the form ∀R : φ(R) for a predicate φ simply by induction
based on the subdomain relation. In the base case of such a proof, we show
φ(a). In the induction step, we prove φ(R) for an arbitrary non-empty R =
(X ,Y, ψ) assuming φ(R′) is true for all subdomains R′ of R, i.e., all R′ =
ψ(x, y) with x ∈ X , y ∈ Y(x).

We define a deterministic discrete system (inductively) as a function s, such
that for any input x, we have s(x) = (y, s′) for an output y and another
deterministic discrete system s′.

Definition 4.3. For a finite recursive domain R, the set SR of (finite) deter-
ministic discrete R-systems (or R-DDS) is the smallest set closed under the
following rules:

(i) If R is the empty domain, i.e., R = a, then SR = {〈 〉}, where 〈 〉 denotes
the empty (always-undefined) system.

(ii) If R = (X ,Y, ψ), we have s ∈ SR for any function s : X → VxR, where

VxR :=
{

(y, s′) | y ∈ Y(x), s′ ∈ Sψ(x,y)
}
.

Example 4.4. Figure 4.2 depicts all four (single-query) DDS for the recursive
domain R = ({0, 1}, x 7→ {0, 1}, (x, y) 7→ a), i.e., all functions from {0, 1} to
{0, 1} × {〈 〉}. For example, flip is defined such that

flip(0) = (1, 〈 〉) and flip(1) = (0, 〈 〉).

A deterministic discrete environment is similar to a deterministic discrete
system. However, it starts by giving an input x and then expects an output y.
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4. Discrete Systems

We define it (inductively) as a pair e = (x, τ) for an input x and a transition
function τ such that τ(y) = e′ for another environment e′.

Definition 4.5. The set ER of (finite) deterministic discrete R-environments
(or R-DDE) is the smallest set closed under the following rules:

(i) ( ) ∈ ER, where ( ) denotes the empty environment.

(ii) If R = (X ,Y, ψ), we have e ∈ ER for any e = (x, τ) ∈ X ×Wx
R, where

Wx
R :=

{
τ
∣∣ τ ∈ (∪y∈Y(x)Eψ(x,y)

)Y(x)
,∀y ∈ Y(x) : τ(y) ∈ Eψ(x,y)

}
.

We call an environment e non-adaptive if either e = ( ) or e = (x, τ) for a
constant function τ which maps to a non-adaptive environment e′.

An R-DDE e can be connected to an R-DDS s, leading to a natural execution
semantics and the notion of a transcript.

Definition 4.6. The transcript tr(s, e) between R-DDS s and R-DDE e is
defined inductively by2

tr(s, e) :=
{

( ) if e = ( )
(x, y), tr (s′, τ(y)) if e = (x, τ) and s(x) = (y, s′)

Moreover, we let TR denote the set of all transcripts tr(s, e) for any R-DDS s
and R-DDE e.

4.2 Probabilistic Discrete Systems
In this section, we introduce probabilistic discrete systems as distributions
over deterministic discrete systems. Note that even though we use the term
probabilistic, we do not demand actual probability distributions, i.e., the dis-
tributions do not need to sum up to one (unless explicitly stated).

Definition 4.7. A probabilistic discrete R-system S : SR → R≥0 (or R-PDS)
is an R≥0-weighted distribution over R-DDS, i.e., S ∈ ΓSRR≥0 .

Analogously, a probabilistic discrete R-environment E : ER → R≥0 (or R
-PDE) is an R≥0-weighted distribution over R-DDE, i.e., S ∈ ΓERR≥0 .

Recall the notation for the x-evaluation of function-valued distributions intro-
duced in Definition 3.6. For R = (X ,Y, ψ) and an R-PDS S, S↓x denotes the
induced distribution over Y × ∪y∈Y(x)Sψ(x,y) for x ∈ X . Often, we combine
this with Notation 3.27. For example, we write S↓x↑y instead of (S↓x)↑y, which
is an ψ(x, y)-PDS.

2We omit the outer parentheses in the second case of the definition, i.e., (x, y), tr (s′, τ(y))
formally denotes the pair ((x, y), tr (s′, τ(y))).
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Figure 4.3: Behavior of the single-query uniform random {0, 1}-function V.

Definition 4.8. The behavior of an R-PDS S, denoted by b(S), is defined
by3

b(S) :=
{
|S| if R = a
〈b(S↓x↑y)〉x∈X ,y∈Y(x) if R = (X ,Y, ψ).

Interestingly, there exist different R-PDS S and S′ with the same behavior,
i.e., b(S) = b(S′). This leads to the following equivalence relation.

Definition 4.9. R-PDS S and T are equivalent, denoted S ≡ T, if they have
the same behavior, i.e., if b(S) = b(T).

The equivalence class of an R-PDS S is denoted by [S], i.e.,

[S] := {S′ | S′ ∈ ΓSRR≥0 ,S ≡ S′}.

By Definition 4.8, S and T are equivalent if either R = a and |S| = |T| or if
R = (X ,Y, ψ) and for every x ∈ X

S↓x↑y ≡ T↓x↑y for all y ∈ Y(x).

Example 4.10. Figure 4.3 depicts the behavior of the single-query uniform
random {0, 1}-function V defined by

V :=
{(

const0, 1
4

)
,

(
const1, 1

4

)
,

(
id, 1

4

)
,

(
flip, 1

4

)}
.

Consider the PDS Vα for α ∈ [0, 1
2 ] defined by

Vα :=
{

(const0, α) , (const1, α) ,
(

id, 1
2 − α

)
,

(
flip, 1

2 − α
)}

.

It is easy to verify that {Vα | α ∈ [0, 1
2 ]} = [V].

3Observe that in the first case (R = a) we have |S| = S(〈 〉).
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4. Discrete Systems

The following proposition can be easily proved by induction over R.

Proposition 4.11. For any two R-PDS S and T, S ≡ T implies |S| = |T|
and left

(
S↓x

)
= left

(
T↓x

)
.

The intuition of Definitions 4.8 and 4.9 is that two PDS S and T are equivalent
if and only if their observable behavior is identical. The following lemma makes
this intuition formally precise.

Lemma 4.12. For any R-PDS S and S′ we have

S ≡ S′ ⇐⇒ tr(S, e) = tr(S′, e) for all R-DDE e,

and if R is a non-adaptive domain,

S ≡ S′ ⇐⇒ tr(S, e) = tr(S′, e) for all non-adaptive R-DDE e.

Proof. We prove the first equivalence by induction over R. If R is the empty
domain the statement follows trivially. Otherwise let R = (X ,Y, ψ). We
prove the two directions of the equivalence separately.

• =⇒. Assume S ≡ S′ and let e ∈ ER be arbitrary. If e = ( ), we have
trivially tr(S, e) = tr(S′, e) since |S| = |S′| by Proposition 4.11. Thus,
assume e = (x, τ) for x ∈ X . For any y ∈ Y(x) we have

tr(S, e)∩[(x,y)...] = (x, y), tr(S↓x↑y, τ(y))
(I.H.)= (x, y), tr(S′↓x↑y, τ(y))
= tr(S′, e)∩[(x,y)...].

In the second step we have invoked the induction hypothesis, using the
fact that S↓x↑y ≡ S′↓x↑y by Definition 4.9. Hence, tr(S, e) = tr(S′, e),
concluding this first part of the proof.

• ⇐=. Assume tr(S, e) = tr(S′, e) for all R-DDE e. As tr(·, e) is a total
function, we have |S| = |S′|. Let x ∈ X , y ∈ Y(x) be arbitrary. For
arbitrary e′ ∈ Eψ(x,y), let the R-DDE e = (x, τ) be such that τ(y) = e′
(and τ(y′) ∈ Eψ(x,y′) arbitrary for y′ 6= y). Then,

(x, y), tr(S↓x↑y, e′) = tr(S, e)∩[(x,y)...]

= tr(S′, e)∩[(x,y)...] = (x, y), tr(S′↓x↑y, e′).

This implies that tr(S↓x↑y, e′) = tr(S′↓x↑y, e′) for all ψ(x, y)-DDE e′. By
induction hypothesis we have thus S↓x↑y ≡ S′↓x↑y, concluding the second
part of the proof.
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4.3. Distinguishers and Distinguishing Advantage

Finally, observe that if we restrict the set of environments to those which are
non-adaptive, essentially the same proof is valid. Only one thing changes: In
the second part of the proof (⇐=), we let the R-DDE e = (x, τ) be such that
τ(y′) = e′ for all y′ ∈ Y(x). This is a valid (non-adaptive) R-DDE if the
domain R is non-adaptive.

Remark 4.13. It is well-known that there exist (pairs of) systems for which the
optimal adaptive distinguishing advantage is strictly larger than the optimal
non-adaptive one. Lemma 4.12 implies (assuming a non-adaptive domain)
that if the optimal non-adaptive distinguishing advantage is zero, then the
optimal adaptive distinguishing advantage is zero as well.

A sketch of a similar statement can be found in a footnote of [6]:

”Using complexity leveraging, we can transform any adaptive dis-
tinguisher into a non-adaptive one with an exponential loss in the
distinguishing advantage. If the optimal non-adaptive distinguish-
ing advantage is 0 as is the case for two identical distributions,
then the optimal adaptive distinguishing advantage must also be
0.”

Note that an argument via Lemma 4.12 is more elementary and more concise.

4.3 Distinguishers and Distinguishing Advantage
Many cryptographic security definitions are based on the indistinguishablity
of a (real) system and an ideal system, leading to the notion of a distinguisher
and the distinguishing advantage. A distinguisher is, roughly speaking, an
environment that can output an additional bit B ∈ {0, 1} representing the
distinguisher’s guess. This section defines these concepts formally.

Definition 4.14. A deterministic discrete R-distinguisher d (or R-DDD) is
an R-DDE e together with a partial function b : TR 7→ {0, 1}, i.e., it is a pair

(e, b) ∈ ER × {0, 1}⊆TR .

We let DR denote the set of deterministic discrete R-distinguishers.

A probabilistic discrete R-distinguisher D : ER × {0, 1}⊆TR → R≥0 (or R
-PDD) is an R≥0-weighted distribution over ER × {0, 1}⊆TR .

Definition 4.15. Given two weight-1R-PDS S and T and a weight-1R-PDD
D, the distinguishing advantage ∆D(S,T) is defined as

∆D(S,T) := PrDT(B(tr(T,E)) = 1)− PrDS(B(tr(S,E)) = 1),

where DT denotes the random experiment of choosing D = (E,B) according
to D and, independently, S according to S. The experiment DS is defined
analogously.
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4. Discrete Systems

Moreover, we define the optimal distinguishing advantage ∆(S,T) by

∆(S,T) := sup
D

∆D(S,T),

where the supremum is over all weight-1 R-PDD.

The following lemma is well-known and often used in the cryptographic liter-
ature.

Lemma 4.16. For any two weight-1 R-PDS S and T we have

(i) ∆(S,T) = supd∈DR ∆d(S,T) = supe∈ER δ(tr(S, e), tr(T, e)).

(ii) ∆(S,T) = 1− infe∈ER |tr(S, e) u tr(T, e)|.

Proof. (i) The direction ∆(S,T) ≥ supd∈DR ∆d(S,T) is obvious. The
other direction follows since we have for any probabilistic discrete R-
distinguisher D due to independence

∆D(S,T) =
∑

d∈supp(D)
D(d) ·∆d(S,T) ≤ sup

d∈supp(D)
∆d(S,T).

Moreover, it is straightforward to verify that

sup
d=(e,b)

∆d(S,T)

= sup
d=(e,b)

(
PrT(b(tr(T, e)) = 1)− PrS(b(tr(S, e)) = 1)

)
= sup

d=(e,b)

∑
m∈TR
b(m)=1

(
PrT(tr(T, e) = m)− PrS(tr(S, e) = m)

)

= sup
e∈ER

∑
m∈TR

max
(
0,PrT(tr(T, e) = m)− PrS(tr(S, e) = m)

)
= sup

e∈ER
δ(tr(S, e), tr(T, e)),

where the last step is due to Fact 2.8.

(ii) The claim follows from (i) and Fact 2.8 (for weight-1 distributions X
and Y we have δ(X,Y) = 1− |X uY|).

4.4 The Pseudo-Metric ∆̂ and the Distance Lemma
In this section, we define a new pseudo-metric ∆̂ on probabilistic discrete
systems. Not only is this pseudo-metric natural and elementary, it also is more
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4.4. The Pseudo-Metric ∆̂ and the Distance Lemma

minimal than the classical distinguishing advantage ∆, since it is environment-
less, i.e., it does not depend on a distinguisher or environment interacting with
the systems.

We then prove the Distance Lemma, which states that for any two PDS S and
T we have ∆̂(S,T) = ∆(S,T).

Definition 4.17. The distance between weight-1 R-PDS S and T is defined
by

∆̂(S,T) := 1− |[S] u [T]| .

Note that by Fact 2.8, the distance can be equivalently expressed as

∆̂(S,T) = inf
(S′,T′)∈[S]×[T]

δ(S′,T′).

A fundamental consequence of the definition of ∆̂ is that the probability-
theoretic interpretation of the intersection weight discussed in Section 3.4
can now be used to reason naturally about the distance of systems: We have
∆̂(S,T) ≤ ε if and only if we can think of S and T being equal with probability
at least 1− ε.

Observe that at this point, it is not obvious that ∆̂ is a pseudo-metric as
claimed. The Distance Lemma connects the new pseudo-metric ∆̂ to the
classical distinguishing advantage ∆, essentially stating that the two pseudo-
metrics are equal.

Lemma 4.18 (Distance Lemma). For all weight-1 R-PDS S and T we have

∆̂(S,T) = ∆(S,T),

and there exist (S′,T′) ∈ [S]× [T] and such that ∆̂(S,T) = 1− |S′ uT′|.

The direction ∆̂(S,T) ≥ ∆(S,T) is not very surprising. It captures the
intuition of the distinguishing advantage ∆(S,T) being upper-bounded by
the probability that S and T are not equal. The opposite direction, however,
is far from obvious.

The significance of Lemma 4.18 is at least twofold.

• First, it gives an intuitive and elementary justification of the classical
distinguishing advantage ∆, as the natural probability-theoretic inter-
pretation of ∆̂ is inherited.

• Second, it allows to understand and prove the closeness of two systems
with respect to ∆̂ in an elegant and elementary manner, and then to ob-
tain an indistinguishability result in the classical understanding without
any additional effort (see also Chapter 5).
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Figure 4.4: Behavior of the weight-1 PDS S (left) and T (right). On input 0, system S (system
T) outputs 1 with probability 2

3 (with probability 4
5 ).

4.4.1 Two Examples

Before proving the Distance Lemma, we present two examples.

Example 4.19. Figure 4.4 shows the behavior of two PDS S and T which
answer a single query. The optimal distinguishing advantage is 2

15 , and an
optimal distinguisher will always input 0. Consider the PDS S′ defined by

S′ :=
{(

const0, 13
60

)
,

(
id, 7

60

)
,

(
flip, 8

15

)
,

(
const1, 2

15

)}
,

and the PDS T′ defined by

T′ :=
{(

const0, 1
6

)
,

(
id, 1

30

)
,

(
flip, 2

3

)
,

(
const1, 2

15

)}
.

It is easy to verify that S′ ∈ [S] and T′ ∈ [T]. Moreover, we have 1−|S′ uT′| =
2
15 = ∆(S,T).

Example 4.20. Figure 4.5 shows the behavior of two PDS S and T which
answer up to two queries. The optimal distinguishing advantage is 59

99 , and an
optimal distinguisher will always input 0 as first query, and x2 = y1 as second
query, where y1 is the output from the first query. For the DDS q0,q1,q2
and q3 depicted in Figure 4.6, consider the PDS S′ defined by

S′ :=
{(

q0,
2
3

)
,

(
q1,

1
9

)
,

(
q2,

1
9

)
,

(
q3,

1
9

)}
,

and the PDS T′ defined by

T′ :=
{(

q0,
1
11

)
,

(
q1,

7
11

)
,

(
q2,

2
11

)
,

(
q3,

1
11

)}
.

It is easy to verify that S′ ∈ [S] and T′ ∈ [T]. Moreover, we have 1−|S′ uT′| =
59
99 = ∆(S,T).
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Figure 4.5: Behavior of the weight-1 PDS S (left) and T (right). On first input x1 = 0, system
S (system T) outputs y1 = 1 with probability 2

9 (with probability 3
11 ).

q0

10

01

q1

10

00

q2

01

01

q3

01

11

Figure 4.6: Four R-DDS q0,q1,q2, and q3 for the recursive domain R = ({0, 1}, x 7→
{0, 1}, (x, y) 7→ Rx,y), where R0,y = ({0, 1}, x 7→ {0, 1}, (x, y) 7→ a) and R1,y = a. On
input x1 = 0 and x2 = 1 the DDS q3 outputs y1 = 1 and y2 = 1.

4.4.2 Proof of the Distance Lemma
Recall that the Distance Lemma states that for all weight-1 R-PDS S and T
we have

∆̂(S,T) = ∆(S,T),

and there exist (S′,T′) ∈ [S]× [T] and such that ∆̂(S,T) = 1− |S′ uT′|.

Proof of Lemma 4.18 (Distance Lemma). Due to the definition of ∆̂ (Defini-
tion 4.17) and Lemma 4.16 (ii) we have:

∆̂(S,T) = ∆(S,T) ⇐⇒ |[S] u [T]| = inf
e∈ER

|tr(S, e) u tr(T, e)| .

Let FR := {tr(·, e) | e ∈ ER}. Since by Lemma 4.12 the equivalence relation
≡FR as defined in Chapter 3 (see Section 3.2) is equal to ≡ from Definition 4.9,
the lemma can thus be expressed equivalently as

The pair (SR,FR) is existentially observation-compatible. (4.1)
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4. Discrete Systems

We prove (4.1) by induction over R. If R is the empty domain, the state-
ment is obvious. Thus, let R = (X ,Y, ψ) be a non-empty domain. Recall
Definitions 4.3 and 4.5, and in particular the definitions of VxR and Wx

R:

VxR =
{

(y, s′) | y ∈ Y(x), s′ ∈ Sψ(x,y)
}
, and

Wx
R =

{
τ
∣∣ τ :

(
∪y∈Y(x)Eψ(x,y)

)Y(x)
, ∀y ∈ Y(x) : τ(y) ∈ Eψ(x,y)

}
.

Consider the set FxR ⊆ TRV
x
R defined by

FxR := {f | τ ∈ Wx
R, f(y, s′) := (x, y), tr(s′, τ(y))}

=
{
f | v :

(
∪y∈Y(x)Fψ(x,y)

)Y(x)
,∀y ∈ Y(x) : v(y) ∈ Fψ(x,y),

f(y, s′) := (x, y), v(y)(s′)
}
.

For every x ∈ X we instantiate Lemma 3.28 with Lx = Y(x) and the tu-
ple 〈(Sψ(x,y),Fψ(x,y))〉y∈Lx . As (Sψ(x,y),Fψ(x,y)) is existentially observation-
compatible by induction hypothesis, the lemma implies that (VxR,FxR) is exis-
tentially observation-compatible for all x ∈ X .

Invoking Lemma 3.24 on the tuple 〈(VxR,FxR)〉x∈X allows us to conclude that
(SR,FR − {tr(·, ( ))}) is existentially observation-compatible.

Finally, observe that tr(·, ( )) is a constant function, thus (SR,FR) is existen-
tially observation-compatible by Lemma 3.23.

4.5 Winning Probability of Discrete Games
Finally, we consider a simplistic type of games which are discrete systems
as discussed before, but where the final output is a bit win ∈ {0, 1} which
denotes whether the game was won or not.

Definition 4.21. A finite recursive game domain is a non-empty finite recur-
sive domain R = (X ,Y, ψ) such that either

• X = {�}, Y(�) = {0, 1}, and ψ(x, y) = a for all x ∈ X , y ∈ Y(x), or

• � /∈ X and ψ(x, y) is a finite recursive game domain for all x ∈ X , y ∈
Y(x).

Recall that TR denotes the set of all R-transcripts. We let T wR ⊆ TR denote
the set of all winning R-transcripts. Formally,

• ((�, 1), ( )) ∈ T wR if X = {�}, Y(�) = {0, 1} and
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4.5. Winning Probability of Discrete Games

• ((x, y), t) ∈ T wR if t ∈ T wψ(x,y) for x ∈ X , y ∈ Y(x).

Definition 4.22. For any finite recursive game domain R, we call an R-DDS
g a deterministic discrete R-game and an R-PDS G a probabilistic discrete
R-game.

Definition 4.23. The optimal winning probability of a weight-1 R-game G
is defined as

ν(G) := sup
E

PrEG(tr(G,E) ∈ T wR ),

where the supremum is over all weight-1 R-PDE, and EG denotes the random
experiment of choosing E according to E and G independently according to
G.

Definition 4.24. A deterministic discrete R-game g ∈ SR is always-lose if
and only if its final output bit is always zero, i.e., g(�) = (0, 〈 〉) if � ∈ X and
otherwise g(x) = (y, s′) for an always-lose game s′. If g is not always-lose it is
winnable. This partitions SR into the set SwR of winnable games and the set
S lR of always-lose games.

Definition 4.25. The (environment-less) winnability ρ(G) of an R-game G
is defined by

ρ(G) := Ĝ(SwR).

Moreover, the (environment-less) winnability ν̂(G) of a set G of probabilistic
R-games is defined by

ν̂(G) := inf
G∈G

ρ(G).

The following lemma states that the environment-less winnability ν̂([G]) of
an equivalence class [G] coincides with the optimal winning probability G (for
any probabilistic game G).

Lemma 4.26. For any probabilistic weight-1 R-game G we have

ν̂([G]) = ν(G),

and there exists a game G∗ ∈ [G] such that ρ(G∗) = ν̂([G]).
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4. Discrete Systems

Proof (sketch). Let Gl be the game which is derived from G by fixing all final
outputs in the support of G to win = 0.

∆(G,Gl) = sup
e∈ER

δ(tr(G, e), tr(Gl, e))

= sup
e∈ER

∑
m∈TR

max
(
PreG(tr(G, e) = m)− PreGl(tr(Gl, e) = m), 0

)
= sup

e∈ER

∑
m∈T wR

max
(
PreG(tr(G, e) = m)− PreGl(tr(Gl, e) = m), 0

)
= sup

e∈ER

∑
m∈T wR

PreG(tr(G, e) = m)

= ν(G).

In the third step, we have used that for any non-winning transcript m /∈ T wR
we have PreG(tr(G, e) = m) ≤ PreGl(tr(Gl, e) = m).

By the Distance Lemma (Lemma 4.18) there exists (G∗,G∗l ) ∈ [G]× [Gl] such
that 1− |G∗ uG∗l | = ∆(G,Gl) = ν(G). As the winnability of Gl is zero, the
winnability of G∗l must be zero as well. Thus, the winnability of G∗ is at most
ν(G), i.e.,

ρ(G∗) ≤ ν(G).

Since the game can actually be won with probability ν(G), we must have for
any G′ ∈ [G]

ν(G) ≤ ρ(G′).

Hence, by antisymmetry ρ(G∗) = ν(G) and by transitivity ρ(G∗) ≤ ρ(G′) for
all G′ ∈ [G], implying ρ(G∗) = infG′∈[G] ρ(G′). This concludes the proof.

We note that Lemma 4.26 can be used to significantly simplify the proof of
the following Lemma of [13].

Lemma 4.27 (informal, Lemma 6 [13]). For weight-1 R1-game G1 and R2-
game G2, let [G1,G2]∧ be the independent parallel conjunction-composition
of the two games (i.e., the game which is won exactly if both parallel subgames
are won). Then

ν([G1,G2]∧) = ν(G1) ν(G2).

4.6 Conclusions
We have given a new representation of Maurer’s theory of discrete systems.
Based on this new representation, gave an environment-less perspective of
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4.6. Conclusions

the distance of discrete systems as well as the winning probability of discrete
games. Invoking the results on observation compatibility from Chapter 3, we
proved that the new environment-less notions are actually equivalent to their
classical (environment-based) counterparts.

We conclude by discussing some open questions and future work.

• The discrete systems as defined in this chapter are based on the usual
fully-adaptive single-execution semantics. The results shown in this
chapter do not immediately carry over to different semantics. It is an
open question how the definitions can be generalized in a clean manner
to partially-adaptive multi-execution semantics such that the Distance
Lemma still holds.

• The discussed notion of games has a winning condition which is encoded
into the output of the system. This is overly-specific and more general
games do not have this property (see [12]). Since the environment being
able to observe the winning condition has no influence on the winning
probability (in the considered setting), it is easy to see that Lemma 4.26
also holds for a more general type of games. Ideally, we would also want
a direct proof that does not depend on the Distance Lemma.
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Chapter 5

Generalizing Indistinguishability
Amplification

The goal of indistinguishability amplification is to construct an object which
is ε-close to its ideal from objects which are only ε′-close to their ideal for ε
much smaller than ε′. The most basic type of this construction is to XOR
two independent bits B1 and B2. It is easy to verify that if B1 and B2 are
ε1- and ε2-close to the uniform bit U, respectively, B1 ⊕ B2 will be 2ε1ε2-
close to the uniform bit. The crucial property of the XOR construction is
the following: If at least one of the bits B1 or B2 is perfectly uniform, then
their XOR is perfectly uniform as well. Interestingly, it suffices to assume only
such a neutralizing property of a construction to prove an indistinguishability
amplification result. The notion of neutralizing constructions was introduced
in [13] to prove a generalization of the above XOR construction for discrete
systems.

In this chapter, we further generalize the notion of neutralizing constructions
from [13] and use the pseudo-metric ∆̂ presented in Chapter 4 to prove a more
general indistinguishability amplification theorem than the Product Theorem
of [13].

5.1 A-neutralizing Constructions
We first define the abstract notion of a construction. Intuitively, one can think
of a construction as a discrete system which can be connected to multiple sub-
systems via an inside interface, and which communicates with environments
via an outside interface. Implemented as an actual discrete system, such an
object is described formally in [12] and called a converter. As the concrete
interaction and the interfaces are immaterial to the statements made in this
chapter, we introduce a more abstract object which is simply a function map-
ping systems to another system.
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5. Generalizing Indistinguishability Amplification

Definition 5.1. For finite recursive domains R1, . . . ,Rk and R, a determin-
istic (R1, . . . ,Rk  R)-construction is a function c : SR1 × · · · × SRk → SR
for which there exists a function f : ER → ER1 × · · · × ERk and a function
g : TR1 × · · · × TRk → TR such that for every (s1, . . . , sk) ∈ SR1 × · · · × SRk
and e ∈ ER
tr(c(s1, . . . , sk), e) = g(tr(s1, e1), . . . , tr(s1, ek)) for (e1, . . . , ek) = f(e).

Moreover, a probabilistic (R1, . . . ,Rk  R)-construction C is a distribution
over deterministic (R1, . . . ,Rk  R)-constructions based on the monoid R≥0.

Remark 5.2. The above definition of a construction can be easily general-
ized for abstract objects A1, . . . ,Ak and A that are observable by functions
F1, . . . ,Fk and F , respectively.

In the following, expressions involving multiple weight-1 distributions denote
the independent composition of the distributions. For example, for a weight-1
construction C and weight-1 Ri-PDS Si, the R-PDS C(S1, . . . ,Sk) is defined
by

C(S1, . . . ,Sk)(s) :=
∑

c∈supp(C),si∈SRi
c(s1,...,sk)=s

C(c) ·
∏
i∈[k]

Si(si).

The proof of the following lemma is straightforward via Lemma 4.12 and thus
omitted.

Lemma 5.3. For a probabilistic (R1, . . . ,Rk  R)-construction C and k
pairs (Si,S′i) such that Si and S′i are weight-1 Ri-PDS with Si ≡ S′i we have

C(S1, . . . ,Sk) ≡ C(S′1, . . . ,S′k).

Notation 5.4. For k pairs (x1, y1), . . . , (xk, yk) with xi, yi ∈ Zi and b ∈ {0, 1}k
we define

〈x1/y1, . . . , xk/yk〉b := (z1, . . . , zk),

where zi = xi if bi = 0 and zi = yi otherwise (bi = 1).

Definition 5.5. A probabilistic k-ary construction C is A-neutralizing for
(F1, I1), . . . , (Fk, Ik) and a monotone1 set A ⊆ {0, 1}k if for any choice of bits
b ∈ A we have

C(〈F1/I1, . . . ,Fk/Ik〉b) ≡ C(I1, . . . , Ik).

Definition 5.6. A probabilistic k-ary construction C is q-neutralizing for
(F1, I1), . . . , (Fk, Ik) if it is A-neutralizing for2 A = {b | b ∈ {0, 1}k, hw(b) ≥
q}.

1A set A ⊆ {0, 1}k is monotone if for every a ∈ A we have a′ ∈ A for every a′ ∈ {0, 1}k
with a′i ≥ ai.

2Recall that hw(b) denotes the hamming weight of b.
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5.1.1 A General A-neutralizing Construction

We briefly present a simple A-neutralizing construction for general A.

For a finite field F, let A ∈ Fq×k be a (q × k)-matrix for q ≤ k, and let
A ⊆ {0, 1}k be the (monotone) set containing all v ∈ {0, 1}k with vi1 = · · · =
viq = 1 for q distinct indices, such that the columns i1, . . . , iq of A are linearly
independent.

Consider the deterministic construction c : Fk → Fq defined by3

c(x1, . . . , xk) := A · (x1, . . . , xk)T.

It is easy to see that c is A-neutralizing for (X1,U), . . . , (Xk,U), where Xi

are arbitrary weight-1 distributions over F and U is the uniform distribution
over F.

Observe moreover that c is q-neutralizing if A is a hyper-invertible matrix
as introduced in [2]. Assuming the field F has sufficiently many elements
(|F| ≥ q + k) such a matrix always exists (see [2] for a concrete polynomial-
based construction).

More generally, consider the construction c′ which combines k functions fi :
X → F for some finite set X to q functions f ′j : X → F by

c′(f1, . . . , fk) :=
(
f ′1, . . . , f

′
q

)
,

where f ′i := x 7→ Ai ·(f1(x), . . . , fk(x))T and Ai is the i-th row of A. As above,
c′ is A-neutralizing for (F1,R), . . . , (Fk,R), where Fi are arbitrary weight-1
distributions over FX and R is the uniform distribution over FX .

5.2 Indistinguishability Amplification for q-neutralizing
Constructions

Lemma 5.7 (cf. Lemma 3 of [13]). For any weight-1 R-PDS S,T and any
weight-1 B ∈ Γ{0,1}R≥0

∆̂(〈S/T〉B,T) = B(0) · ∆̂(S,T).

Proof. We give a succinct proof via the classical distinguishing advantage and
the Distance Lemma. A proof without Distance Lemma is in principle possible

3One can think of an element of Fn as a single-query DDS with unary input alphabet
{�} and output alphabet Fn.
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though more involved. Observe that

∆D(〈S/T〉B,T)
= PrDT(B(tr(T,E)) = 1)− PrD〈S/T〉B(B(tr(〈S/T〉B,E)) = 1)

= B(0) ·
(
PrDT(B(tr(T,E)) = 1)− PrDS(B(tr(S,E)) = 1)

)
+ B(1) ·

(
PrDT(B(tr(T,E)) = 1)− PrDT(B(tr(T,E)) = 1)

)
= B(0) ·

(
PrDT(B(tr(T,E)) = 1)− PrDS(B(tr(S,E)) = 1)

)
= B(0) ·∆D(S,T).

The claim follows from the Distance Lemma (Lemma 4.18).

The following lemma describes a general proof technique and can be used as a
tool to prove indistinguishability amplification results for any A-neutralizing
construction.

Lemma 5.8. Let the probabilistic k-ary construction C be A-neutralizing for
(F1, I1), . . . , (Fk, Ik) and let B,B′ ∈ Γ(A∪{0k})R≥0 be weight-1 distributions
such that B(0k) > 0 and B′(0k) = 0. Then,

∆̂(C(F1, . . . ,Fk),C(I1, . . . , Ik))
≤ B(0k)−1 ·

∑
e∈{0,1}k

δ(mask(B, e),mask(B′, e)) ·E(e),

where mask(x,m) is the tuple derived from x by removing all elements at the
indices at which mi = 0, and E(e1, . . . , ek) = ∏

i∈[k] Bernoulli(∆̂(Fi, Ii))(ei).

Proof. By Lemma 5.7 we have for weight-1 B′′ ∈ Γ{0,1}R≥0 with B′′(0) = B(0k)

∆̂(C(F1, . . . ,Fk),C(I1, . . . , Ik))
= B(0k)−1 · ∆̂(〈C(F1, . . . ,Fk)/C(I1, . . . , Ik)〉B′′ ,C(I1, . . . , Ik))

Observe that 〈C(F1, . . . ,Fk)/C(I1, . . . , Ik)〉B′′ ≡ C(〈F1/I1, . . . ,Fk/Ik〉B) and
C(I1, . . . , Ik) ≡ C(〈F1/I1, . . . ,Fk/Ik〉B′) since C is A-neutralizing. Thus,

∆̂(〈C(F1, . . . ,Fk)/C(I1, . . . , Ik)〉B′′ ,C(I1, . . . , Ik))
= ∆̂(C(〈F1/I1, . . . ,Fk/Ik〉B),C(〈F1/I1, . . . ,Fk/Ik〉B′)).
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5.2. Indistinguishability Amplification for q-neutralizing Constructions

According to the Distance Lemma4 (Lemma 4.18) there exist (F′i, I′i) ∈ [Fi]×
[Ii] for every i ∈ [k] such that |F′i u I′i| = |[Fi] u [Ii]|. Thus,

∆̂(C(〈F1/I1, . . . ,Fk/Ik〉B),C(〈F1/I1, . . . ,Fk/Ik〉B′))
= ∆̂(C(

〈
F′1/I′1, . . . ,F′k/I′k

〉
B),C(

〈
F′1/I′1, . . . ,F′k/I′k

〉
B′))

≤ δ(C(
〈
F′1/I′1, . . . ,F′k/I′k

〉
B),C(

〈
F′1/I′1, . . . ,F′k/I′k

〉
B′))

≤ δ(
〈
F′1/I′1, . . . ,F′k/I′k

〉
B,
〈
F′1/I′1, . . . ,F′k/I′k

〉
B′),

where the last step is due to Lemma 3.13.

We exhibit a random experiment E with random variables F′i ∼ F′i, I′i ∼ I′i, B ∼
B, and B′ ∼ B′, such that L := 〈F′1/I′1, . . . ,F′k/I′k〉B ∼ 〈F′1/I′1, . . . ,F′k/I′k〉B
and R := 〈F′1/I′1, . . . ,F′k/I′k〉B′ ∼ 〈F′1/I′1, . . . ,F′k/I′k〉B′ . Define Ei := [F′i 6= I′i]
and E := (E1, . . . ,Ek).

Observe that the joint distribution of F′i and I′i as well as B and B′ can be
chosen arbitrary (as long as the marginal distributions are respected). Recall
the definition of Cδ(·, ·) from Lemma 3.33. Let the joint distribution of F′i and
I′i be Cδ(F′i, I′i). Moreover, the joint distribution of B and B′ depends on E
such that5

PrE(mask(B, e) = b,mask(B′, e) = b′,E = e)
= Cδ(mask(B, e),mask(B′, e))(b, b′) ·E(e).

Thus we have by Lemma 3.33

δ(
〈
F′1/I′1, . . . ,F′k/I′k

〉
B,
〈
F′1/I′1, . . . ,F′k/I′k

〉
B′)

≤ PrE(L 6= R)
=

∑
e∈{0,1}k

PrE(L 6= R,E = e)

=
∑

e∈{0,1}k
PrE(mask(B, e) 6= mask(B′, e),E = e)

=
∑

e∈{0,1}k
δ(mask(B, e),mask(B′, e)) ·E(e),

which concludes the proof.

Using Lemma 5.8 we show the following indistinguishability amplification the-
orem for all q-neutralizing constructions.

4The Distance Lemma is invoked merely for the existence of (F′i, I′i) ∈ [Fi] × [Ii] with
|F′i u I′i| = |[Fi] u [Ii]|.

5Note that even though the joint distribution of B and B′ depends on E, the random
variable B is still independent of ((F′1, I′1), . . . , (F′k, I′k)).
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Theorem 5.9. If the probabilistic k-ary construction C is q-neutralizing for
(F1, I1), . . . , (Fk, Ik), then

∆̂(C(F1, . . . ,Fk),C(I1, . . . , Ik)) ≤
k∑

i=k−q+1
fi−(k−q),i · hw(E)(i),

where

fn,m := 1
2 ·

1 +
m∑
j=n

(
m

j

)
·
(
j − 1
n− 1

) ,
and E(e1, . . . , ek) = ∏

i∈[k] Bernoulli(∆̂(Fi, Ii))(ei).

Proof. For q ≥ 1 and k ≥ q we represent distributions Bq,k,B′q,k using multi-
sets Aq,k, A′q,k over A∪{0k}, with the natural understanding that Bq,k (B′q,k)
is uniformly distributed over Aq,k (A′q,k), i.e., Bq,k(a) = Aq,k(a)/|Aq,k|.

Let

A′q,k :=
⋃

j∈{q,q+2,...,k}

{(
b,

(
j − 1
q − 1

))
| b ∈ {0, 1}k, hw(b) = j

}
and

Aq,k := {(0k, 1)} ∪
⋃

j∈{q+1,q+3,...,k}

{(
b,

(
j − 1
q − 1

))
| b ∈ {0, 1}k, hw(b) = j

}
.

For a multiset M over {0, 1}n, let blindm(M) be the multiset over {0, 1}n−m
derived from M by removing the bits at m fixed positions, say the first m
bits, for every element. We only consider multisets for which blindm(M) is
well-defined, i.e., it does not matter at which m positions the bits are removed.
We prove the following statement

∀q ≥ 1, ∀k ≥ q : |Aq,k| = |A′q,k| = fq,k

∧ ∀j ≥ q : blindj(Aq,k) = blindj(A′q,k)
∧ ∀j < q : |blindj(Aq,k)4blindj(A′q,k)| = 2fq−j,k−j .

(5.1)

This implies the claim via Lemma 5.8, since we have

∆̂(C(F1, . . . ,Fk),C(I1, . . . , Ik))
≤ Bq,k(0k)−1 ·

∑
e∈{0,1}k

δ(mask(Bq,k, e),mask(B′q,k, e)) ·E(e)

= |Aq,k| ·
k∑
i=0

|blindk−i(Aq,k)4blindk−i(A′q,k)|
2|Aq,k|

· hw(E)(i)

=
k∑

i=k−q+1
fi−(k−q),i · hw(E)(i).
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In the second step we have used that for any two multisets M,M ′ representing
uniform weight-1 distributions M,M′ we have δ(M,M′) = |M4M ′|/(2|M |)
if |M | = |M ′| .

We prove (5.1) by induction over k. Observe that

blind1(A′q,k) =
⋃

j∈{q,q+2,...,k−1}

{(
b,

(
j − 1
q − 1

))
| b ∈ {0, 1}k−1, hw(b) = j

}

∪
⋃

j∈{q−1,q+1,...,k−1}

{(
b,

(
j

q − 1

))
| b ∈ {0, 1}k−1, hw(b) = j

}
.

Similarly, we see that

blind1(Aq,k) ={(0k−1, 1)}

∪
⋃

j∈{q+1,q+3,...,k−1}

{(
b,

(
j − 1
q − 1

))
| b ∈ {0, 1}k−1, hw(b) = j

}

∪
⋃

j∈{q,q+2,...,k−1}

{(
b,

(
j

q − 1

))
| b ∈ {0, 1}k−1, hw(b) = j

}
.

If q = 1, it is easy to see that |Aq,k| = |A′q,k| = fq,k, as well as blind1(A′q,k) =
blind1(Aq,k) and |blind0(Aq,k)4blind0(A′q,k)| = 2fq,k (since Aq,k and A′q,k are
disjoint).

Otherwise (q ≥ 2), we use the well-known recurrence
( j
q−1
)
−
(j−1
q−1
)

=
(j−1
q−2
)

to
obtain

blind1(A′q,k)− blind1(Aq,k) ∩ blind1(A′q,k)

=
⋃

j∈{q−1,q+1,...,k−1}

{(
b,

(
j − 1
q − 2

))
| b ∈ {0, 1}k−1, hw(b) = j

}

= A′q−1,k−1.

Analogously, we see that

blind1(Aq,k)− blind1(Aq,k) ∩ blind1(A′q,k)

= {(0k−1, 1)} ∪
⋃

j∈{q,q+2,...,k−1}

{(
b,

(
j − 1
q − 2

))
| b ∈ {0, 1}k−1, hw(b) = j

}

= Aq−1,k−1.

As by induction hypothesis blindq−1(Aq−1,k−1) = blindq−1(A′q−1,k−1), we have
blindq(Aq,k) = blindq(A′q,k). Since blinding does not change the cardinality of
a multiset, it follows |Aq,k| = |A′q,k| = fq,k. Moreover, as Aq,k and A′q,k are
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fn,m m=1 2 3 4 5 6 7 8 9 10 11 12
n=1 1 2 4 8 16 32 64 128 256 512 1024 2048

2 − 1 3 9 25 65 161 385 897 2049 4609 10241
3 − − 1 4 16 56 176 512 1408 3712 9472 23552
4 − − − 1 5 25 105 385 1281 3969 11649 32769
5 − − − − 1 6 36 176 736 2752 9472 30592
6 − − − − − 1 7 49 273 1281 5313 20097
7 − − − − − − 1 8 64 400 2080 9472
8 − − − − − − − 1 9 81 561 3201
9 − − − − − − − − 1 10 100 760
10 − − − − − − − − − 1 11 121
11 − − − − − − − − − − 1 12
12 − − − − − − − − − − − 1

Table 5.1: Values of fn,m for m ≤ 12. For a k-ary q-neutralizing construction, the bound of
Theorem 5.9 depends on the values f1,k−q+1, f2,k−q+2, . . . , fq,k. For q = 3 and k = 8, the
corresponding values are marked in bold.

disjoint we have |blind0(Aq,k)4blind0(A′q,k)| = 2fq,k. Finally, for j ≥ 1 and
j < q we have

|blindj(Aq,k)4blindj(A′q,k)| = |blindj−1(Aq−1,k−1)4blindj−1(A′q−1,k−1)|
(I.H.)= 2f(q−1)−(j−1),(k−1)−(j−1) = 2fq−j,k−j ,

which concludes the proof.

Example 5.10. If the probabilistic 8-ary construction C is 3-neutralizing for
(F1, I1), . . . , (F8, I8) we can obtain the required values of fn,m from Table 5.1
to conclude via Theorem 5.9 that

∆̂(C(F1, . . . ,F8),C(I1, . . . , I8))
≤ 32 · hw(E)(6) + 161 · hw(E)(7) + 512 · hw(E)(8),

where E(e1, . . . , e8) = ∏
i∈[8] Bernoulli(∆̂(Fi, Ii))(ei).

Corollary 5.11 (Theorem 1 [13]). If the probabilistic k-ary construction C
is 1-neutralizing for (F1, I1), . . . , (Fk, Ik), then

∆̂(C(F1, . . . ,Fk),C(I1, . . . , Ik)) ≤ 2k−1 · hw(E)(k) = 2k−1 ·
∏
i∈[k]

∆̂(Fi, Ii),

where E(e1, . . . , ek) = ∏
i∈[k] Bernoulli(∆̂(Fi, Ii))(ei).
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Proof. We invoke Theorem 5.9 with q = 1 to obtain

∆̂(C(F1, . . . ,Fk),C(I1, . . . , Ik)) ≤ f1,k · hw(E)(k)

It remains only to see that

f1,k = 1
2 ·

1 +
k∑
j=1

(
k

j

)
·
(
j − 1

0

) = 1
2 ·

k∑
j=0

(
k

j

)
= 2k−1.

Corollary 5.12 (q = k − 1). If the probabilistic k-ary construction C is
(k − 1)-neutralizing for (F1, I1), . . . , (Fk, Ik), then

∆̂(C(F1, . . . ,Fk),C(I1, . . . , Ik)) ≤
k∑
i=2

i · hw(E)(i),

where E(e1, . . . , ek) = ∏
i∈[k] Bernoulli(∆̂(Fi, Ii))(ei).

Proof. We invoke Theorem 5.9 with q = k − 1 to obtain

∆̂(C(F1, . . . ,Fk),C(I1, . . . , Ik)) ≤
k∑
i=2

fi−1,i · hw(E)(i).

It remains only to see that

fi−1,i = 1
2 ·

1 +
i∑

j=i−1

(
i

j

)
·
(
j − 1
i− 2

) = 1
2 · (1 + (i+ (i− 1))) = i.

5.3 Understanding the Bound
In this section, we discuss different aspects of the bound shown in Theorem 5.9
and finally present a simplified (non-tight) variant.

5.3.1 Parametrized Setting
Consider a parametrized k-ary q-neutralizing construction Ck,q (with param-
eters q ≥ 1 and k ≥ q) for an infinite sequence of pairs (F1, I1), (F2, I2), . . ..
Assume ∆̂(Fi, Ii) ≤ ε for all i ∈ N and a fixed ε < 1

2 . Let k∗q,ε,δ be the smallest
k such that

∆̂(Ck,q(F1, . . . ,Fk),Ck,q(I1, . . . , Ik)) ≤ δ.

Table 5.2 lists the upper bound kq,ε,δ of k∗q,ε,δ for δ = 2−100 which is implied
by Theorem 5.9.
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kq,ε,δ ε=10−5 10−3 0.01 0.05 0.1 0.2 0.3 0.4 0.49
q=1 7 12 18 30 43 75 135 308 3397

2 8 13 20 33 47 81 146 335 3806
3 9 14 21 35 50 86 155 360 4190
4 10 16 23 37 52 91 164 383 4563
5 11 17 24 39 55 96 173 405 4927
10 17 23 31 49 67 117 213 511 6697
20 27 34 44 65 89 155 286 708 10143
50 58 66 80 111 149 258 490 1275 20349
102 109 119 137 183 242 422 818 2202 37297
103 1012 1035 1105 1381 1815 3263 6625 18776 −

Table 5.2: Upper bound kq,ε,δ of k∗q,ε,δ for δ = 2−100 and different q, ε.

Example 5.13. Let ck,q denote the deterministic q-neutralizing construction
from Section 5.1.1 which transforms k independent random functions from X
to F to q random functions from X to F for a finite field F. Observe that ck,q
is exactly of the parametrized form described above.

Consider the following scenario: We would like to have (an object very close
to) (R1, . . . ,Rq), which denotes q independent uniform random functions from
X to F. However, our resources consist only of independent random functions
Fi with ∆̂(Fi,R) = ε for a too large ε. For fixed q, ε < 1

2 , and δ ∈ [0, 1], we
are thus interested in the smallest number k of random functions we need to
combine to obtain

∆̂(ck,q(F1, . . . ,Fk), (R1, . . . ,Rq)) ≤ δ.

For example, if our random functions Fi are all 0.1-close to the uniform ran-
dom function, we can construct q = 5 random functions that are (altogether!)
2−100-close to 5 independent uniform functions by combining 55 random func-
tions (see Table 5.2) using c55,5.

5.3.2 Amplification Threshold

For any q and k with q ≤ k, we define the amplification threshold ε∗q,k as the
largest real number for which ∆̂(Fi, Ii) < ε∗q,k for all i ∈ [k] implies

∆̂(C(F1, . . . ,Fk),C(I1, . . . , Ik)) < ε∗q,k,

assuming C is q-neutralizing for the pairs (Fi, Ii). Table 5.3 contains the
a lower bound εq,k ≤ ε∗q,k of the amplification threshold that is implied by
Theorem 5.9. Note that ∆̂(Fi, Ii) < ε∗q,k does not imply strong amplification.

52



5.3. Understanding the Bound

εq,k k=2 3 4 5 6 7 8 9
q=1 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

2 − 0.1835 0.2659 0.3044 0.3285 0.3458 0.3590 0.3697
3 − − 0.0914 0.1706 0.2140 0.2430 0.2645 0.2816
4 − − − 0.0542 0.1210 0.1624 0.1913 0.2135
5 − − − − 0.0358 0.0915 0.1292 0.1567
6 − − − − − 0.0253 0.0722 0.1064
7 − − − − − − 0.0188 0.0588
8 − − − − − − − 0.0146

Table 5.3: Lower bound εq,k of the amplification threshold ε∗q,k for k ≤ 12, rounded down. For
q = 1 it is known that εq,k = ε∗q,k.

τq,k k=2 3 4 5 6 7 8 9
q=1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 − 0.5000 0.7676 0.8689 0.9164 0.9422 0.9577 0.9677
3 − − 0.2325 0.5000 0.6529 0.7442 0.8026 0.8424
4 − − − 0.1312 0.3472 0.5000 0.6045 0.6781
5 − − − − 0.0837 0.2559 0.3956 0.5000
6 − − − − − 0.0579 0.1975 0.3220
7 − − − − − − 0.0424 0.1577
8 − − − − − − − 0.0324

Table 5.4: Conjectured upper bound τq,k of the amplification threshold ε∗q,k for k ≤ 12, rounded
up.

Table 5.4 shows the value τq,k which we conjecture to be a (very loose) upper
bound of of ε∗q,k. It is derived under the (sole) assumption that there exists a
q-neutralizing k-ary construction for every q and k ≥ q such that

∆̂(C(F1, . . . ,Fk),C(I1, . . . , Ik)) ≥
k∑

i=k−q+1
hw(E)(i),

where E(e1, . . . , ek) = ∏
i∈[k] Bernoulli(∆̂(Fi, Ii))(ei).

5.3.3 A Simpler Bound

The following lemma gives an alternative representation of fn,m as well as an
almost-tight closed-form bound.

Lemma 5.14. For any n ≥ 1 and m ≥ n we have
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(i) tn,m = 2tn,m−1 + tn−1,m−1, where tn,m := ∑m
j=n

(m
j

)
·
(j−1
n−1

)
. This implies

fn,m = 2fn,m−1 + fn−1,m−1 − 1.

(ii)

2m−n ·
(
m− 1
n− 1

)
∈
[
fn,m, 2fn,m −

1
3

]
.

Proof (sketch). (i) is straightforward to show by induction over m. (ii) follows
from (i), also by induction.

We present a simpler variant of the bound of Theorem 5.9 which follows from
Lemma 5.14. Beware that this simple bound is strictly larger than the original
bound, and thus cannot be tight.

Corollary 5.15. If k-ary C(·, . . . , ·) is q-neutralizing for (F1, I1), . . . , (Fk, Ik),
then

(i)

∆̂(C(F1, . . . ,Fk),C(I1, . . . , Ik))

≤ 2k−q
k∑

i=k−q+1

(
i− 1

i− 1− (k − q)

)
· hw(E)(i)

= 2k−q
q−1∑
j=0

(
j + (k − q)

j

)
· hw(E)(k − q + 1 + j),

where E(e1, . . . , ek) = ∏
i∈[k] Bernoulli(∆̂(Fi, Ii))(ei).

(ii) if ∆̂(Fi, Ii) ≤ ε for all i ∈ [k] we have

∆̂(C(F1, . . . ,Fk),C(I1, . . . , Ik))

≤ 2k−qεk−q+1
q−1∑
j=0

(
j + k − q

j

)(
k

q − 1− j

)
εj

≤ 2k−q+1 k!
(k − q + 1)! · ε

k−q+1.

Proof (sketch). (i) follows directly from Theorem 5.9 and Lemma 5.14 (ii).
(ii) follows by further bounding the expression obtained from (i).
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5.4 On the Bound’s Tightness in Special Cases
The bound shown in Corollary 5.11 for 1-neutralizing constructions is known
to be tight (see [13]). In this section, we briefly discuss the tightness of the
bound of Corollary 5.12 for 2-neutralizing 3-ary constructions.

For any quasigroup (G, ?), let c3,2 : G3 → G2 denote the 3-ary construction6

c3,2(x, y, z) := (x ? y, y ? z).

It is straightforward to verify that c3,2 is 2-neutralizing for the pairs (X,U),
(Y,U), and (Z,U), where X, Y, and Z are arbitrary weight-1 distributions
over G and U is the uniform weight-1 distribution over G. Thus, we have by
Corollary 5.12

δ(c3,2(X,Y,Z), U2)
≤ 2 · (δ(X)δ(Y) + δ(X)δ(Z) + δ(Y)δ(Z))− 3 · δ(X)δ(Y)δ(Z),

where U2 is the uniform distribution over G2 and δ(·) is the statistical distance
from the uniform distribution, i.e., δ(·) := δ(·,U).

For the special case δ(X) = δ(Y) = δ(Z) = ε ∈ [0, 1] we obtain thus

δ(c3,2(X,Y,Z), U2) ≤ 6ε2 − 3ε3.

Proposition 5.16. For any c ∈ R>0 and any x, y, z ∈ [0, 1
c ]

(i) |x− y| ≤ x+ y − 2cxy.

(ii) |xy + yz − xz| ≤ xy + yz + xz − 2cxyz.

The bounds are tight, as is seen by setting x = y = z = 1
c .

Proof. (i) Observe that |x − y| = x + y − 2 min(x, y) and as cx ≤ 1 and
cy ≤ 1, we obtain min(x, y) ≥ min(cyx, cxy) = cxy.

(ii) We have |xy+ yz− xz| = |xy+ (y− x)z| ≤ xy+ |y− x|z by the triangle
inequality. Finally, (i) implies that xy+ |y−x|z ≤ xy+yz+xz−2cxyz.

Fact 5.17. Assume (G, ?) = (Zn,⊕n) for even n ≥ 2, and let for εX ∈ [0, 1
n ]

X(x) =


1
n + εX if x = 0
1
n − εX if x = n

2
1
n otherwise

6As in Section 5.1.1, one can think of an element of Gn as a single-query DDS with
unary input alphabet {�} and output alphabet Gn. It is easy to see that for any distribution
X over such systems we have [X] = {X} and thus for any pair (X,Y) of such weight-1
distributions ∆̂(X,Y) = δ(X,Y).
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Moreover, let Y and Z be defined analogously for εY, εZ ∈ [0, 1
n ]. It is straight-

forward (though somewhat tedious) to show that

δ(c3,2(X,Y,Z), U2) =
(

2− 3
n

)
(δ(X)δ(Y) + δ(X)δ(Z) + δ(Y)δ(Z))

+ 1
n
· (|δ(X)δ(Y) + δ(X)δ(Z)− δ(Y)δ(Z)|

+ |δ(X)δ(Y) + δ(Y)δ(Z)− δ(X)δ(Z)|
+ |δ(X)δ(Z) + δ(Y)δ(Z)− δ(X)δ(Y)|).

If δ(X) = δ(Y) = δ(Z) = ε ∈ [0, 1
n ] we thus obtain

δ(c3,2(X,Y,Z), U2) =
(

1− 1
n

)
6ε2,

and for ε = 1
n

δ(c3,2(X,Y,Z), U2) = 6ε2 − 6ε3.

The following bound is tight by Proposition 5.16 since {δ(X), δ(Y), δ(Z)} ⊆
[0, 1

n ].

δ(c3,2(X,Y,Z), U2)
≤ 2 · (δ(X)δ(Y) + δ(X)δ(Z) + δ(Y)δ(Z))− 6 · δ(X)δ(Y)δ(Z).

Fact 5.18. Let (G, ?) be an arbitrary quasigroup with |G| = n. If the support
of X, Y, and Z is a singleton set, respectively, we have δ(X)→ 1 as n→∞
(and analogously for Y and Z). As the support of c3,2(X,Y,Z) is a singleton
set as well we have

δ(c3,2(X,Y,Z), U2)→ 1 as n→∞.

This shows that for any bound of the form

δ(c3,2(X,Y,Z), U2) ≤
d1 · δ(X)δ(Y) + d2 · δ(X)δ(Z) + d3 · δ(Y)δ(Z) + d4 · δ(X)δ(Y)δ(Z)

for constants di ∈ R we must have
∑
i di ≥ 1.

It is easy to see that the above examples imply the proved general bound

2 · (δ(X)δ(Y) + δ(X)δ(Z) + δ(Y)δ(Z))− 3 · δ(X)δ(Y)δ(Z)

being almost tight. There is, however, a tiny gap in the constant in front
of the term δ(X)δ(Y)δ(Z) between the shown constructions and the proven
bound. It is not obvious whether this gap can be closed by a more clever
2-neutralizing construction or by a better bound.
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5.5 Conclusions
We have introduced A-neutralizing constructions and proved a general in-
distinguishability amplification theorem (Theorem 5.9) that holds for any
q-neutralizing construction. This generalizes the previously known Product
Theorem of [13], which is essentially the same statement for the special case
q = 1.

We conclude by discussing some open questions and future work.

• Is the bound proved in Theorem 5.9 tight for all q-neutralizing construc-
tions or can it be further improved? Even if the bound is indeed tight,
it is likely that a better bound can be shown under stronger assump-
tions. An interesting question is what natural assumptions can be made
in order to achieve this.

• There are at least three orthogonal dimensions in which Theorem 5.9
can be further generalized:

– The most straightforward generalization is to go from q-neutralizing
constructions to arbitrary A-neutralizing constructions. Note that
the presented proof of Theorem 5.9 for q-neutralizing constructions
relies heavily on the symmetry of such constructions. While the
general technique presented in Lemma 5.8 is directly applicable to
anyA-neutralizing construction7, instantiating it in an optimal way
will likely require an additional clever idea.

– The only crucial assumption needed to achieve indistinguishability
amplification as in Theorem 5.9 seems to be the neutralizing prop-
erty of the construction. Thus, it is plausible that the same bound
can be shown for a much more general type of objects (not only
discrete systems).

– Can the argument be extended to a computational setting? We
expect the hardness amplification results shown in [11] to be useful
to achieve this. Presumably, this will yield a generalization of the
bounds shown in [15].

7For a k-ary A-neutralizing construction with fixed small k it not difficult to find dis-
tributions B and B′ such that a good bound is obtained.
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Chapter 6

Conclusions

The main focus of this work was on finding the right view on systems and
their properties which naturally appear in computer science and cryptogra-
phy. This is motivated by the observation that with the right perspective,
many statements of interest suddenly become very easy to understand and to
prove. In contrast, a wrong perspective often results in overly complicated
and virtually unformalizable arguments even for seemingly simple statements.

In Chapter 3, we have introduced abstract finite distributions as well as their
intersection. We defined the (existential) observation compatibility of a pair
(A,F), which, loosely speaking, states the following for all pairs X and Y of
distributions over A:

The minimal overlap of f(X) and f(Y) over all functions f ∈ F
is equal to the maximal overlap of any two distributions
X′ and Y′ that are equivalent to X and Y, respectively.

Moreover, we have presented two natural ways to lift observation compati-
bility, i.e., to construct new observation-compatible pairs (A,F) from given
observation-compatible pairs (Ai,Fi). Said lifting methods describe a broad
class of observation-compatible pairs.

Then, in Chapter 4, we have introduced an inductive representation of Mau-
rer’s theory of discrete systems. Within this theory, we gave new definitions
of the distance of probabilistic discrete systems as well as of the maximum
winning probability of certain types of probabilistic discrete games. The
distinctive property of these new definitions is that they are environment-
less, i.e., expressed as intrinsic properties of the objects themselves, free of
an environment interacting with the objects. We then have shown that the
environment-less definitions are actually equivalent to the corresponding clas-
sical ones, applying the results on observation compatibility.
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6. Conclusions

In Chapter 5, we used the new environment-less distance of probabilistic dis-
crete systems to prove a general indistinguishability amplification theorem for
q-neutralizing constructions. The proof is more elementary than the one of
the Product Theorem of [13], and at the same time we show a more general
statement (for arbitrary q ∈ N≥1, as opposed to only q = 1).

Overall, the results provide great confidence in the environment-less paradigm.
Yet it is in the nature of things that finding the right view is a continuous
process. We therefore conclude by discussing ideas for future work.

• Even though the results on lifting observation compatibility already de-
scribe a fairly broad class of pairs with the property, we conjecture that
a much stronger lifting lemma can be shown. Roughly speaking, we
conjecture that lifting succeeds if whenever multiple components of an
object can be observed at once, arbitrary adaptivity between the pro-
jections on the components is allowed.

• We discussed two properties in the environment-less paradigm: the dis-
tance of probabilistic discrete systems as well as the winning probability
of probabilistic discrete games. While these are key properties in most
cryptographic statements, a fully environment-less (cryptographic) sys-
tems theory needs many different variants of (similar) properties that
have not been covered yet. For example, an interesting problem is to in-
terpret indistinguishability under partially-adaptive or multi-execution
distinguishers within this new paradigm.

• The treatment in this work is purely information-theoretic. Moreover,
it does not take into account quantum systems. An interesting question
is whether the results shown on observation compatibility as well as the
environment-less properties can be extended to quantum systems or to
computational models. We expect that our results do not carry over
in their entirety. However, it is likely that our statements can either
be properly generalized or extended by additional arguments to achieve
this goal.

• As discussed in Section 4.6, the presented definitions of discrete systems
capture the standard fully-adaptive single-execution semantics. While
it is certainly desirable to generalize these semantics, we propose to go
even further than that. Ideally, one would distill the essential properties
of all such discrete systems into a concise set of axioms1. For example,
a property similar to observation compatibility might simply be stated
as an axiom about a set of abstract systems S. This would allow to rea-
son about such systems without fixing a specific representation of the
objects. Especially in settings with intricate semantics, which usually

1We use the term axiom for non-logical axioms (as in ”ring axioms” and not as in ”axiom
of choice”).
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demand a more involved representation of the corresponding objects,
such an abstract systems theory may lead to an even greater simplifi-
cation than for the systems notion discussed in this work. Presumably,
this kind of theory would represent a new level of abstraction that is
positioned above the discrete system level and below the most general
system level which only captures the composition of systems (see [14, 8]).
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