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Abstract. Composable security definitions, at times called simulation-
based definitions, provide strong security guarantees that hold in any
context. However, they are also met with some skepticism due to many
impossibility results; goals such as commitments and zero-knowledge that
are achievable in a stand-alone sense were shown to be unachievable
composably (without a setup) since provably no efficient simulator exists.
In particular, in the context of adaptive security, the so-called “simulator
commitment problem” arises: once a party gets corrupted, an efficient
simulator is unable to be consistent with its pre-corruption outputs. A
natural question is whether such impossibility results are unavoidable or
only artifacts of frameworks being too restrictive.

In this work, we propose a novel type of composable security statement
that evades the commitment problem. Our new type is able to express the
composable guarantees of schemes that previously did not have a clear
composable understanding. To this end, we leverage the concept of system
specifications in the Constructive Cryptography framework, capturing
the conjunction of several interval-wise guarantees, each specifying the
guarantees between two events. We develop the required theory and
present the corresponding new composition theorem.

‘We present three applications of our theory. First, we show in the con-
text of symmetric encryption with adaptive corruption how our notion
naturally captures the expected confidentiality guarantee—the messages
remain confidential until either party gets corrupted—and that it can
be achieved by any standard semantically secure scheme (negating the
need for non-committing encryption). Second, we present a composable
formalization of (so far only known to be standalone secure) commitment
protocols, which is instantiable without a trusted setup like a CRS. We
show it to be sufficient for being used in coin tossing over the telephone,
one of the early intuitive applications of commitments. Third, we reexam-
ine a result by Hofheinz, Matt, and Maurer [Asiacrypt’15] implying that
IND-ID-CPA security is not the right notion for identity-based encryption,
unmasking this claim as an unnecessary framework artifact.

* A preliminary version of this paper appears in the proceedings of CRYPTO 2020.
This is the full version.
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1 Introduction

1.1 A Plea for Composable Security

Common security definitions found in the literature are game-based, i.e., they
require that an adversary cannot win a game that exports certain oracles to the
adversary. The goal of such a security game is to capture the adversary’s potential
attacks in a minimal manner. However, the mapping of the game’s interface to
potential attacks in the real-world use of the cryptographic protocol is commonly
not straight-forward. Thus, it is often a-priori unclear which game-based security
notion is required in order for the protocol to be secure in a specific application.
Rather, that aspect is often informally considered and passed down outside the
security definitions, becoming “folklore” over the years.

Composable frameworks, such as [5,22,17,12], on the other hand, provide
operational security definitions instead. The way they formalize security is based
around comparing the execution of the protocol in the real world to an idealized
world that intrinsically has the desired security properties. Importantly, this
definition is with respect to any environment, thereby ensuring that the security
guarantees not only do not exclude any attacks but also hold irrespective of other
protocols (or multiple instances of the same one) being executed. For instance,
the composable security definition of a symmetric encryption scheme is the
construction of a secure communication channel from an authentic one and a key,
with different assumed and constructed channels leading to different notions (e.g.,
whether replaying is possible). Hence, for a given application it is now trivial to
decide whether a certain scheme suffices.

Finally, composable frameworks facilitate modularity. First, they are based
on defining components with clean abstraction boundaries (e.g., a secure channel)
that abstract away the details of how that module has been constructed (or
otherwise obtained). This idealized module can then be used by a higher-level
protocol with the security of the combined overall protocol following directly
from the composition theorem. Thus, the security of complex protocols can be
neatly proven by composing it from smaller sub-protocols.

1.2 Obstacles for Composable Security

While the clear semantics, modularity, and high security guarantees suggest that
all protocols should be proven secure in a composable framework rather than
in an ad-hoc game-based manner, composable definitions are still not prevalent
with the majority of new research still carried out using game-based definitions.

One of the main reasons hindering adoption might be that many primitives are
known to be impossible to achieve in the plain UC model, such as zero knowledge
[5] and commitments [6]. Furthermore, Lindell has shown [13] that impossibility
results are not specific to the UC model but inherent to any kind of similar
model based around the existence of an efficient simulator. As a consequence,
respective protocols have to rely on additional setup assumptions, such as a
common reference string, and are also generally less efficient.



One particular obstacle composable definitions often face is the so-called
“simulator commitment problem”, which mainly arises when considering adaptive
security. In a nutshell, it describes the simulator’s inability to explain some of its
previous choices the moment a party gets corrupted. More concretely, consider the
example of two parties securing their communication using symmetric encryption.
The intuition is that the adversary does not learn the messages until either of the
parties gets corrupted, thereby revealing the key. Before, the adversary should
learn at most the length. As a result, the simulator, in the first phase, has to
output a fake ciphertexts independent of the real messages. For any semantically
secure encryption scheme he can actually do so. This, however, commits him on
those fake ciphertexts. At the moment a party gets corrupted, the simulator then
needs to be able to explain those ciphertexts by outputting a matching encryption
key. Even if he learns all the previous messages, he will not be able to do so for
regular encryption schemes. Note, however, that the commitment problem is not
restricted to adaptive corruptions only. Similar issues also arise, for instance, in
the context of password-based security [9] or identity-based encryption [10], where
it has been shown that due to this commitment problem the standard game-based
notions do not induce the expected corresponding composable statements.

On a general level, this raises the fundamental question whether such impossi-
bility results actually indicate a security issue, and hence protocols not satisfying
the stronger composable definitions should not be used, or whether they present
an artifact of the framework. Especially for the commitment problem, the com-
mon understanding is that the latter is true. Furthermore, the obstacles are often
dealt with by either reverting to composable security with static corruptions only,
or by simply retracting to game-based definitions. As a result, there is a clear
need for a better composable security notion that lets us settle this question and
remedy the issue of the spurious impossibilities.

1.3 Existing Attempts to Overcome the Obstacles

A number of approaches have been proposed in order to circumvent the afore-
mentioned issues of composable security.

First, Canetti and Krawczyk proposed the notion of non-information oracles
[8] within the UC-framework. A non-information oracle is essentially a game-based
definition embedded into an ideal functionality. For instance, rather than saying
that an encryption scheme should realize a secure channel that only leaks the
length, the respective functionality leaks the output of the non-information oracle,
which is required to satisfy a CPA-like definition. While this circumvents the
commitment problem, there are two drawbacks. First, it weakens composition by
requiring explicit reductions to the embedded games in the security proof of the
higher-level protocols using the functionality. Second, for each ideal functionality a
different type of non-information oracle needs to be defined, without providing any
generic template. As a consequence, the question of the “right” non-information
oracle re-arises, just like when defining a security game.

Second, a line of work considers super-polynomial simulators [21,23,4]. The
initial proposal by Pass [21] considered sub-exponential simulators and polynomi-



ally bounded environments. This implies, however, that the simulator cannot be
absorbed into the environment, ceding some of the most fundamental composition
properties of the UC-framework. The later works by Prabhakaran and Sahai
[23] and Broadnax et al. [4] empower the simulator in a more controlled manner,
preserving most natural composition properties. Their adoption, however, still
suffers from being rather technical, and moreover, still quite limited in the number
of issues a more powerful simulator can overcome. For instance, when considering
a PRG whose seed might leak, even an all powerful simulator will not be able to
explain a truly randomly chosen output with an appropriate seed.

Finally, Backes, Diirmuth, Hofheinz, and Kiisters [1] proposed an approach
where the real-world resource would just disallow certain activation sequences by
the environment that were otherwise impossible to simulate. While this avoids
the complications of the other approaches, it scarifies the evident semantics of
composable security notions by excluding certain—deemed artificial—attacks. A
similar approach has recently been used by Jost, Maurer and Mularczyk in [11].

1.4 Contributions

Interval-wise guarantees. In this work, we propose an alternative solution to
the simulator-commitment problem that is aimed at expressing the guarantees of
regular schemes within a composable framework. More concretely, we introduce
a novel type of construction notion within the Constructive Cryptography (CC)
framework that avoids the commitment problem while providing a number of
distinct benefits. First, it provides a clean semantics of how the guarantees should
be interpreted. Second, it holds in any environment, just as any statement in the
CC framework. Third, it is equipped with a composition theorem.

Since the commitment problem usually occurs at a very specific point of
the protocol execution, such as when a party gets corrupted, where the security
guarantees of the protocol anyway inherently change, our novel construction
notion is centered around the very natural idea of formalizing guarantees that
hold in a certain interval (between two events). That is, our notion for instance
allows to formalize separate security guarantees before and after the corruption
event. In contrast to existing simulation-based notions, we thereby only require
the simulation to work within each interval, not forcing the simulation to be
consistent between the intervals (which causes the initial commitment issues). We
discuss how the security guarantees provided by our notion should be interpreted,
when stronger notions might still be desirable, and how our notion fits into the
space of static versus adaptive security.

Theory extensions. On a technical level, we leverage the specification-based
approach of the CC framework, where proving a protocol 7 to be secure corre-
sponds to modeling the assumed real-world specification R, and showing that the
resulting specification R is contained in an ideal specification S, i.e, 7R C S.

We formalize interval-wise guarantees as a novel type of specifications within
the CC framework. We carefully consider the subtleties arising when defining
such specifications and show how they interact with the other aspects of the



framework. Finally, we present the respective composition theorem, that actually
supersedes all the existing ones, and in particular allows to syntactically combine
multiple such interval-wise construction statements, or an interval-wise one with
a regular construction statement.

Applications. As a third contribution, we apply our methodology to several
examples. First, we consider the encrypt-then-MAC paradigm in a setting where
the keys can adaptively leak to the adversary, stylizing adaptive passive corrup-
tions. Using our interval-wise guarantees, we obtain a simple composable security
definition thereof without the need for non-committing encryption. More con-
cretely, we consider the following three properties. First, we require the messages
to be confidential as long as neither the encryption nor the authentication key
leaked. (An IND-CPA secure scheme cannot guarantee confidentiality without
authenticity.) In our definition, this is phrased as the construction of a secure
channel up to that point. Second, between the exposure of the encryption key
and the authentication key, we require communication to still be authentic, i.e.,
an authenticated channel to be constructed. Finally, after the encryption key has
been exposed, we still require correctness.

As a second application, we show a composable formalization of information-
theoretically binding commitment schemes realizable in the plain model. We then
show how, based on such a commitment scheme, Blum’s protocol constructs a
composable coin-toss notion. Applying composition then directly implies that
this formalization can be achieved in the plain model as well. While the resulting
specification is obviously too weak to serve as a common reference string, it
guarantees unbiasedness. Hence, it is provides a good enough type of random-
ness resource whenever unbiasedness is sufficient, in particular formalizing and
formally validating the intuitive-level argumentation about flipping a coin over
the telephone of the corresponding papers of that time.

Finally, we consider the composable guarantees of identity-based encryption.
We revisit the result by Hofheinz, Matt, and Maurer [10] that shows the standard
ind-id-cpa notion to be too weak when considering a traditional composable
statement based on the existence of a single simulator, even when considering
static corruptions, due to the commitment problem. Furthermore, the authors
have shown that the same weaker construction that actually can be achieved,
could also be achieved by a weaker game-based notion ind-idl-cpa, modeling
so-called lunch-time attacks. We refute their results in the following way: Based
on interval-wise guarantees we formalize a composable specification of IBE that
corresponds exactly to the standard ind-id-cpa notion.

1.5 Outline

In Section 3, we provide a high-level motivation and introduction to our notion,
before presenting the technical details in Section 4. As a running example, we
consider encrypt-then-MAC with symmetric keys that might get leaked to the
adversary. In Section 5 we present a novel composable definition of perfectly



binding commitments and its application to coin tossing. Finally, in Section 6 we
revisit composable security of identity-based encryption.

2 Preliminaries: Constructive Cryptography

This work builds upon some more recent aspect of the Constructive Cryptography
(CC) framework [17,14]. We therefore revisit the key aspects thereof, follows the
exposition introduced in [17], with some adaptations from [L1].

2.1 Resources, Converters, and the Interaction Model

At its heart, the Constructive Cryptography framework views cryptography as
a resource theory, in which parties use certain resources (e.g., communication
channels and a shared secret key) to construct another resource via a protocol.

Global events. In this work, we use the version of Constructive Cryptography
introduced in [11] that enriches the interaction model by a notion of globally
observable events. Formally, events are a generalization of monotone binary
outputs (MBO) introduced by Maurer et al. [16]. Roughly, an MBO is a value
that can change from 0 to 1 but not back, which can be interpreted as a single
event happening once the MBO changes to 1. An event then just corresponds to
a named MBO and the global event history £ is a list of event names without
duplicates (to model that every event can occur at most once). For an event name

n, we denote by £ & &, the act of appending n to £ (or leaving it unchanged if
it is already contained). Moreover, we use &, as a short-hand notation to denote
that n is in the list £, and say that the event happened. Finally, we denote by
&,, < &,, that the event n; precedes the event ny in the event history.

Resources. A resource’ R is a reactive system that interacts in the following
two ways with the rest of the world: First, it allows interaction at one or several
named communication interfaces, in the following just called interfaces, at which
it can be queried an input x, and must answer with an output y at the same
interface. Second, during an activation, the resource R can depend on the global
event history £, and can furthermore append events from a predefined set of
names. We call this set of names the events controlled by R.

Formally, resources are modeled as random systems [15], where the interface
address, the actual input x, and the current state of the event history are encoded
as part of the input. Analogously, the answer y and the new state of the event
history are encoded as part of the output, under the constraint that the old state
of the event history is a prefix of the new one. For the sake of this paper, a reader
unfamiliar with the CC framework might however just think of a resource as the
behavior of an oracle machine, where each interface corresponds to an oracle and

! The analogon to functionalities in the UC framework [5].



the event history being similar to the “directory” ITI used in the recent version
of UC [5]. Note, however, that a resource only defines the behavior of the system
and not its description, i.e., two different (pseudo-code descriptions of) ITMs
having the same input-output behavior denote the same resource.

A set of resources can be viewed as a single one, with the interface set of
the composed resource being the union. For resources Ry, ..., R, (with disjoint
interface sets) we denote by [Ry,...,R,] the parallel composition.

Converters and protocols. In the Constructive Cryptography framework,
converters express the local action executed by one party. A converter expects
to be connected to a given number of interfaces at the “inside”, and emulates a
certain set of interfaces at the “outside”. Upon an input at an outside interface,
the converter is allowed to make a bounded number of oracle queries to the inside
interfaces, before returning a value at the queried interface.

For a converter m and a resource R, let Z denote a tuple describing an injective
mapping from 7’s inside interfaces to interfaces of R. We then denote by R’ := 7ZR
the resource obtained from connecting the converter accordingly. The resource R’
no longer exposes those interfaces but the ones emulated by 7 instead. Converter
attachment satisfies the natural property of composition order independence,
stating that the composition order does not matter—only the final system does.

Proposition 1. Let w1 and mo be two converters, let R be a resource and let 1,
and Ty be such that they assign disjoint interfaces. Then, 1 73?R = n22nT'R.
Moreover, if S is another resource such that the interface sets of R and S are
disjoint, then we have ﬂlzl [R, S] = [wlle, S],

We define a protocol to be a set of converter-connection pairs, i.e,. w =
{(m1,Z1),...,(7n,I,)} with pairwise disjoint Z;’s. Moreover, we say that = is
a protocol for a resource R, if R has all the required interfaces for the protocol
application to be well-defined, and write R to denote its application.

The environment (distinguisher). The distinguisher D is a special type of
environment that first interacts with a resource R by making queries to the
resource’s interfaces. Between two such queries it can access the global event
history and append events to it, except the ones controlled by R. Note that
activations are atomic, i.e., at any moment in time either the resource or the
distinguisher is activated, but not both. Finally, the distinguisher ends the
interaction with the resource by outputting a bit. The advantage of D is then
defined as
AP(R, S) = Pr[D?(S) = 1] — Pr[D?(R) = 1],

where we use the syntax D®(-) to make explicit that the distinguisher has oracle
access to the global event history £.

2.2 Constructions

Specifications. It is natural to consider only certain desired (or assumed)
properties of a system and deliberately not specify others. Some of those choices



are intrinsic to the mathematical model we use, such as only considering the
input-output behavior and ignoring the physical aspects. Other properties can be
purposefully ignored by considering specifications of systems that simply leave
out those aspects, focusing only on the relevant properties. Following [18], we
model specifications as sets of resources R that all have the same interface set.
For each property, such as confidentiality, one has in mind, one can consider the
set R of resources satisfying that property. Vice versa, each set of resources R
can be interpreted as the set of properties common to all elements. For instance,
authenticated communication might be modeled as the set of all communication
channels that are authentic—not specifying the level of confidentiality by including
both confidential as well as non-confidential channels.

Constructions as subsets. In provable security one typically considers the
execution of a protocol 7 that makes use of some assumed specification R, such
as a communication network or a public-key infrastructure. In short, one wants
to show that the specification 7R := {wR | R € R} satisfies the desired security
properties. As explained in the previous section, those properties are formalized
as a specification S, and thus proving security means proving 7R C S. Note that
obviously the guarantees given by S are generally weaker than the ones by ©w'R.
The purpose of such a statement is, however, that the security properties are in
S both more explicit and simpler to analyze. In other words, the goal is to distill
out the relevant properties and abstract away the others.

Traditionally, the statement wR C S is read as the protocol 7 constructing the
specification S from the specification R, or in UC-jargon the protocol securely
realizing the specification S in the R-hybrid model. Hence, as a shorthand
notation we introduce the following construction notion.

Definition 1. Let R and S be specifications, and let w be a protocol for R. Then,
we say that 7 constructs S from R, denoted R — S, if and only if 7R C S,
i.e.,

RS = nRCS.

In slight abuse of notation, we write R —— S in lieu of {R} — {S} for singleton
specifications.

This construction notion is associated with the usual composition properties
of Constructive Cryptography: sequential and parallel composition—which form
the equivalence of the universal composition theorem of the UC-framework.

Theorem 1. Let R, S, and T be arbitrary specifications, and let w and ©' be
arbitrary protocols for R and S, respectively. Then, we have
LRIZSAS T — RIS T,

2. RS = [R,T| = [5T].

Proof. The first property follows directly from the transitivity of the subset
relation, 7/ (wR) C 'S C T, and the second property follows from Proposition 1:
w[R,T] = [xR,T] C [S,T].



The specifications 7R and S are often referred to as real- and ideal-world,
respectively, according to the so-called real-world/ideal-world paradigm on which
most composable frameworks [5,22,17,12] are based. Following that paradigm,
security statement affirm that the real word is “just-as-good” as the ideal world,
meaning that for all parties, no matter whether honest or adversarial, it does
not make a difference whether they live in the real (where an arbitrary element
of ™R is present), or in the ideal world (where some element of S is present).
Hence, if the honest parties are content with the guarantees they get from the
ideal specification, they can safely execute the protocol in the real world instead.

The (in)existence of a simulator. Simulation-based security turned out to
be one of the most fundamental concepts in cryptography and is closely linked
with the real-world / ideal-world paradigm. It not only forms the foundation
of semantic security, zero knowledge, and the security of MPC, but also of
virtually every composable framework. Whereas the former definitions tend to
require an after-the-fact simulation of the transcript, composable frameworks get
their stronger guarantees from requiring on-line simulation, where an adaptive
environment interacts with the simulator. The common understanding of those
security definitions is then that the simulator “translates” the attacks from the
real-world adversary to the ideal world such that they achieve the same effect.

While the initial version of the Constructive Cryptography framework also
hard-coded the existence of a simulator (with respect to the dummy adversary),
starting from [18], the simulator is no longer an integral part of the construction
notion. Rather, employing a simulator is just one way of defining an ideal specifi-
cation, oS that makes the achieved security properties obvious. For instance, the
specification of confidential channels can then be written as the specification S
of channels that only leak the message length, combined with an arbitrary simu-
lator. From this description it is apparent that for any resource in the combined
specification oS, only the length is leaked.

If one restricts oneself to specifications of this type, then the following more
specific composition theorem can be deduced.

Proposition 2. Let R, S, and T be specifications, and let 7 and 7' be protocols
for R and S, respectively. For any simulators o (for S) and o’ (for T ), such
that the set of interfaces controlled by the simulators are disjoint from the ones
controlled by the protocols, we have

L RIS NS ™ o'T — R ™°% go'T,
2. R 508 = [R,T] = 0o[S,T].

Proof By composition order invariance we have n'0S = on’S C 00’7, implying

S ™ o'T — 08 =5 00’T. The first property then follows directly from
combining this with Theorem 1. The second property follows from Theorem 1

and Proposition 1 as well: #[R, 7] = [7#R,T| C [¢S8,T] =[S, T]. O



2.3 Relaxations

The basic construction notion does not take into account statistical errors or
computational assumptions. Those aspects are formalized by so-called relaxations,
as introduced in [18]. On an abstract level, a relaxation is a mapping from
specifications to weaker, so-called relaxed, specifications. For our purpose, where
we instantiate specifications by sets of resources, we can define a relaxation as a
function mapping a single resource to a set of resources.

Definition 2. Let © denote the set of all resources. A relaxation ¢ is a function
¢: O — 29 (where 2° denotes the power set of ©) such that R € ¢(R) for all
R € O. In addition, for a specification R, we define R® = Urer ¢(R) as a
shorthand notation.

A concrete relaxation thereby formalizes some notion of resources being
“almost-as-good” in some context. That is, if we were happy with constructing
a resource specification S, then we should also be happy with S?, if we believe
the weakening ¢ to be justifiable in the given context. For instance, one could
consider the relaxation that maps the resource R to the set of all computationally
indistinguishable resources from R under some computational assumption. Hence,
if we believe the computational assumption to be valid, we should be as content
with the relaxed specification as with the original one.

Abstracting away irrelevant properties is a core paradigm of any modular
analysis. Applied to Constructive Cryptography, this means that ideally we
should be able to “forget” relaxations. That is, if one shows that one protocol
constructs S® (from some assumed resources), one should be able to compose it
with another statement that assumes S instead. On the most abstract level, it is
easy to see that the following rules apply to any relaxation.

Proposition 3. For any specifications R and S, and any relaxation ¢, we have

1. R CR?,

2. RCS = R?C S?,
3. (RNS)? CR*NS?,
4. (RUS)? =R?US?.

Proof. All properties trivially follow from R € ¢(R).

The reduction relaxation. We now introduce the most fundamental relaxation,
which captures computational security based on explicit reductions. This is defined
as a function e that maps distinguishers to their respective performance in [0, 1],
where €(D) typically refers to the winning probability of a modified distinguisher
D’ (the reduction) on the underlying computational problem.

Definition 3. Let € be a function that maps distinguishers to a value in [0, 1].
Then, the induced relazation on a resource R, denoted R¢, is defined as

R :={S|VD:|AP(R,S)| < ¢(D)}.

We call such a relaxation generally an e-relaxation or reduction relaxation.

10



‘We now discuss several properties that e-relaxations have. First, the errors
just add up, as expressed by the following theorem.

Theorem 2. Let R be an arbitrary specification, and let €1 and ey be arbitrary
e-relaxzations. Then we have (Rel)ez C Rertez,

Proof. This follows directly from the triangle inequality of the distinguishing
advantage. A more detailed proof is given in Appendix A.1.

Second, they naturally commute with protocol application and parallel com-
position of additional resources, i.e., the relaxation can be “pulled out”. In such a
step, however, the additional resource or converter has to be explicitly accounted
for in the reduction.

Theorem 3. The e-relaxation is compatible with protocol application in the
following sense that w(R) C (wR)™, for ex(D) = ¢(Dn(-)), where D ()
denotes the distinguisher that first attaches © to the given resource and then
ezecutes D. Moreover, it is compatible with parallel composition, i.e., [RE,S] C
[R,S]°¢, for es(D) = supges €(D[-,S]), where D[-,S] denotes the distinguisher
that emulates S in parallel to the given resource and then lets D interact with
them.

Proof. The proof is given in Appendix A.2.

The composition theorem with e-relaxations then follows directly from these
compatibility results. The following corollary phrases the corresponding result—
which in older version of Constructive Cryptography used to be called the

composition theorem, thereby hard-coding computational security.

Corollary 1. For any specifications R, S, and T, any protocols w and ©’, and
any e-relazation € and €, we have

LRIYS NS T T = R T2T, Temte
2. R 75 8 = [R,T] =[S, T],

where e and e€s are defined as in Theorem 3, respectively.

Proof. The proof can be found in Appendix A.3.

3 Interval-Wise Guarantees: Motivation and Intuition

In this section, we outline the general approach, and its motivation, proposed in
this work, before we deep dive into the technicalities in Section 4. In particular,
we believe that the conceptual contributions are of interest independent from the
exact mathematical formalization.

11



3.1 A Motivating Example

Consider two parties, Alice and Bob, who want to communicate securely over the
Internet. If they have a pre-shared secret key available, e.g. from running a key
agreement protocol, then it is well known that the encrypt-then-MAC paradigm
achieves the desired goal. Assuming independent keys for the encryption and
MAC scheme, this construction is secure if the underlying encryption scheme is
IND-CPA secure and the MAC scheme is weakly unforgeable.

What, however, if we assume that in reality the keys to not be one hundred
percent secure? Intuitively one should expect the scheme to remain secure until
either of the keys leak to an adversary, and the security properties then to
gracefully downgrade accordingly. More concretely, there is little reason to doubt
the following security guarantees should be provided by the scheme:

1. until either of the keys leak, the scheme should provide both confidentiality
and authenticity;

2. if only the encryption key leaked so far, then the scheme should still provide
authenticity;

3. once the MAC key leaked, the scheme should at least still provide correctness,
i.e., allow the parties to communicate in the absence of an active network
attack.

(Note that if first the MAC key gets exposed, then a scheme that is only IND-CPA
secure might not provide full confidentiality.)

3.2 A Naive Attempt

While the encrypt-then-MAC paradigm has composably proven to be sound in
a context where both parties are honest and the keys are secure (e.g. [8,19]),
extending those results to deal with key exposures has turned out to be surprisingly
strenuous.

Intuitively, one might model the achieved security guarantees as an secure
channel with downgradable security, which waives confidentiality and authenticity
once the respective keys leaked. The protocol should then construct such a
channel from an insecure channel and two leakable keys?, for authentication and
encryption, respectively. See Figure 1 for a formal definition of the respective
resources InsecCh, AuthKey, and EncKey (for the assumed resources), and SecCh
for the secure channel with downgradable security. Following the paradigm
of modularity, one might try to formalize and prove this in two steps and first
consider authentication only, as modeled by a downgradable authenticated channel
AuthCh (c.f. Figure 1 as well). Indeed, one can show the following construction.

2 In CC, the adversary by definition only has access to interfaces statically assigned to
him. Hence, adaptive corruptions are modeled by introducing explicit memory and
computation resources with an adversarial interface, granting the adversary access
once the party is corrupted. For simplicity, we here consider directly leaking key
resources instead. Assuming secure erasure, this is equivalent to passive corruptions.

12



Resource InsecCh Resource AuthCh

Input: (deliver, j)
mp < My[j]
output ok

Initialization Interface E Initialization Interface E
My[-] < L Input: (leak, i) My[-] < L Input: (leak,j)
mp + L output M,[i] mp + L output M,[j]
n <« 0 n<+ 0
Input: (inject,m) Input: (inject,m)
Interface A mg < m Interface A if 5/‘555\ef<‘ey then
Input: (send, m) output ok Input: (send,m) mg < m
n<—n+1 n<<n+1 else
My[n] < m Interface W Myln] < m mp — L
output ok Input: (deliver,i) output ok output ok
mpy < M,y[i]
Interface B output ok Interface B Interface i € {E,W}
Input: receive Input: receive Input: (deliver,j)
output mgp output mgp mg < My[j]
output ok
Resource SecCh Resource ResKey
for Res € {Auth, Enc}
Initialization Interface E
My[] « L Input: (leak,j) TRURT] T
me — L if M,[j] = L then Initialization
n <0 outp}ltki_ eaked k« K
else if ELKS, V Exnike, then -
Interface A Outpun: RY/IA ] uehiey Interface i € {A,B}
Input: (send,m) else Input: fetch
n+<n+1 output |M,[j]| output k
My[s] < m
output ok IUPUtI= k(j(;njeCt’ m) Interface E
if ity then mp < m Input: read
Interface B else mp < L if gleaked (o
Input: receive output ok giiléegut k
output mg - else
Interface ¢ € {E,W} output |

Fig. 1: The resources involved in the encrypt-then-MAC example. Observe how
the authenticated and the secure channel degrade their guarantees once the

respective keys have been leaked.

Proposition 4. Let AuthCh denote the authenticated
security once the respective key is leaked, as formally

channel that degrades its
defined in Figure 1, and

let wmac denote the simple protocol that applies a MAC scheme to the messages.

Then, there exists a simulator omac such that

[AuthKey, InsecCh] ™% (gyacAuth

Ch)EMAC7

where emac denotes a simple reduction to the MAC-forgery game.

Proof. This is a well-known result, which has for instance been sketched in [14].
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However, once we turn our attention towards the second construction step—
using encryption to achieve confidentiality—we run into the so-called simulator
commitment problem of composable security, as expressed by the following
proposition.

Proposition 5. Let SecCh denote a secure channel that degrades the respective
guarantees once the keys have been exposed, as depicted in Figure 1, and let Tenc
be the protocol that applies a symmetric encryption scheme. For any (efficient)
simulator ognc, and (an efficiency preserving) reduction ecpa to the IND-CPA
game, we have

[EncKey, AuthCh] "2 (ogncSecCh)“™,

i.e., IND-CPA security does not suffice.

Proof (Sketch). In the first phase, the simulator has to produce, without knowing
the message, fake ciphertexts ci,co, ..., ¢, that look indistinguishable from the
real one. For an IND-CPA secure scheme, he can easily do so by encrypting an
arbitrary message of the correct length. The moment the encryption key leaks
in the real world, he however has to output a uniformly looking key that makes
his ciphertexts decrypt to the correct messages. Even knowing the messages by
now, this is infeasible unless we assume a non-committing encryption scheme.
Furthermore, as long as the requested key is shorter than n, Nielsen [20] showed
that NCE cannot be achieved in the standard model by non-interactive protocols.

Of course one could avoid this impossibility by utilizing stronger primitives
and/or assumptions, such as non-committing encryption. In some contexts, such
as when considering deniability, their stronger guarantees might even be inherently
necessary. In this work, we however pose the following question: How can we
express the aforementioned security guarantees, that the encrypt-then-MAC
paradigm using regular encryption intuitively does provide, in a composable
framework? That is, rather than establishing a stronger security notion, we aim
at expressing the exact guarantees provided by existing game-based notions.

3.3 Our Solution

So how to express the natural properties that are achieved? First, let us have
another look at the reason for the impossibility: traditional simulation-based
security notions require the simulator to commit to a ciphertext, emulating the
encryption, based on the length only. Even if the simulator later gets to learn
the entire message, it cannot come up with an encryption key that decrypts the
previously output ciphertext to this message. Observe, however, that outputting
the length only is just a technical way of expressing confidentiality until either
one of the keys leak. In principle, there is no inherent requirement for a consistent
simulation strategy across the different phases of the experiments. This is exactly
what our proposal of interval-wise guarantees builds on: allowing disjoint simula-
tion strategies for different phases of a protocol run. In other words, we simply
make three disjoint security statements, one guaranteeing confidentiality and
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authenticity until either key is leaked, one only guaranteeing authenticity between
the exposure of the encryption key and the MAC key, and one guaranteeing
correct delivery of messages afterwards. Given the specification centric approach
of Constructive Cryptography, this can be phrased as

mencTvac [AuthKey, EncKey, InsecCh] C &1 N Sy N Ss,

where &7 to Ss are specifications formalizing the respective guarantees.

Phrasing separate statements can trivially be done in any framework, but also
comes with a number of drawbacks. First, having to specify three constructions
of unconnected, potentially differently described, specifications incurs a certain
cognitive overhead, making the overall achieved security more demanding to
understand. Second, and more severely, one loses some compositional properties.
In particular, the analysis of another protocol building on top of those guarantees
would require to make the exact same case distinction.

To overcome those drawbacks, we phrase each guarantee as an appropriate
interval-wise relazation of the same underlying resource: the downgradable secure
channel. That is, we phrase security as

mencMac [AuthKey, EncKey, InsecCh] C SecCh?®' N SecCh?? N SecCh"si”7

where ¢, to ¢3 formalize the interval-wise relaxations. Another protocol can then
simply assume the overly idealized downgradable secure channel SecCh, with
our novel composition theorem taking care of devising the appropriate overall
security statement. We formalize this type of relaxation and the corresponding
composition theorem in the next section, i.e., Section 4.

Translating the approach to another composable framework, such as UC,
might be feasible but non-trivial. First, one might try to formalize a single
interval-wise guarantee as a different corruption model, where for instance the
adversary simply does not get the encryption key to securely realize a functionality
analogon to SecCh. To then compose this step with a SecCh-hybrid statement,
one would probably require some compiler translating the statement. We, thus,
believe that formalizing our results in CC that allows for arbitrary specifications
is both simpler and more natural.

A remark on adaptive versus static security. Our security statement
makes a static case separation on the intervals considered. This might raise the
question as to how this differs from simply considering static corruptions only. We
would like to stress that our statement is about a real-world system, where the
environment gets to adaptively (depending on all the outputs it sees) choose when
the appropriate keys are leaked. Hence, our notion lies somewhere in between
the traditional notions of static and adaptive security.

To which extent our notion suffices in practice, and when a stronger traditional
adaptive statement is required, is in our opinion an interesting open research
problem. On the one hand, fully adaptively secure notions, without doubt,
play a crucial role as a technical tool in many cryptographic constructions.
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On the other hand, very few cases are known where the overall security of an
application actually seems to be meaningfully impacted by adaptiveness. For
instance, consider the folklore example of an MPC protocol where an adversary
knows which party she has to corrupt based on some observed value during the
execution. Nevertheless, for a polynomially sized adversary structure (i.e., choices
which parties to corrupt), the adversary could still guess upfront, implying that
even traditional static security would suffice. This is for instance the case if there
are only logarithmically (or constant) many parties overall.

Moreover, even if there super-polynomially many choices, it could still be
that our interpretation of the static result is wrong: if we distinguish n static
cases, and in each one of them a certain property is violated with probability
€, then all we can say is that by the union bound the probability of a property
being violated is bounded by ne. Hence, concluding from e being negligible that
the protocol is overall secure, might simply not be sound in the first place.

A remark on stronger security guarantees. The primary goal of this work
is to express the security guarantee of certain schemes in a composable framework,
for which so far this has not been possible. This does not contradict stronger
security notions, such as non-committing encryption, being of use as well. For
instance, insisting that the simulator can explain the ciphertexts (in the traditional
notion) formalizes that the ciphertexts are never of any value—in a broader sense
than confidentiality. This might play an important role in advanced properties
such as deniability, or e.g. in a scenario where an adversary wants to prove to
another party that he managed to wiretap the channel before the transmitted
message and the corresponding encryption key are publicly announced. Phrasing
that no adversary can succeed requires the simulator to work beyond the public
announcement, and achieving it requires non-committing encryption. Otherwise,
committing to the ciphertext ahead of the public announcement should convince
the other party.

4 Interval-Wise Guarantees: Definitions

In this section, we formalize interval-wise guarantees as a type of relaxation
and provide the corresponding composition theorem. In the spirit of modularity,
we proceed in several steps. First, we introduce one relaxation that waives all
guarantees after a certain point, and second, the complementary one that waives
all guarantees before a certain event. Third, we combine those relaxations and
show that it fits well into the existing theory. Finally, we present the resulting
construction notion and phrase the motivating example therein.

4.1 Guarantees up to Some Point

As we have seen in the motivational example, the confidentiality of the messages
should be guaranteed until the key is leaked. To phrase this, we, on a high level,
only require that the simulator works up to this event. We formalize this as a
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Resource untilgiesked  creaced (SecCh
£ VE
AuthKey EncKey

Initialization Interface E
My[] « L Input: (leak,j)
mp < L . leaked leaked .
" ‘z_ o require — (gEncKey \Y2 gAuthKey) AN Myl # L

output |M,[j]|

Interface A

Input: (inject,m)

Input: (send,m) output L

require ~(£52, v ek )

nentl Interface i € {E, W}

My[n] + m Input: (deliver,j)

output ok require - (£giked v el )
Interface B mg < M,y[j]

Input: receive output ok

s leaked leaked
require — (EEncKey Vv gAuthKey)

output mg

where require cond is a short-hand notation for if —cond output L

Fig. 2: The secure channel from Figure 1 when halted once either key leaks. In
contrast to the original one, this resource never leaks the actual messages.

novel type of relaxation consisting of all systems behaving equally up to this
point. To this end, for a resource R, we consider the modified resource that halts
once a certain predicate on the global event history is satisfied.

Definition 4. Let R denote a resource, and let P(E) denote a monotone predicate
on the global event history. That is, if £ is a prefix of &' then P(E) — P(&').
Then, we denote by untilp(R) the resource that behaves like R but halts the
moment P(E) becomes true. That is, it no longer triggers any further events
and all subsequent (including the one for the query that triggered the condition)
answers are the special symbol 1 .

Getting back to our example, consider the resource untilp(SecCh) for P(€) =
Skjt'ﬁgey \% S,'Eerfckﬁgy, depicted in Figure 2. Since this resource no longer produces
any output once either event occurred, it clearly never leaks the messages to Eve
and removes Eve’s capability of injecting messages. Hence, the resulting resource
closely matches the expected secure channel when ignoring key exposures.

We now define the according relaxation, which maps a system to the set of

all systems that behave equivalently up to some event.

Definition 5. Let P be a monotone predicate on the global event history, indi-
cating until when the behavior must be the same as the one of the resource R.
Then, the induced relazation on a resource R, denoted R, is defined as

R = {S | untilp(R) = untilp(S)}

We call such a relaxation generally an until-relaxation.
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As with the e-relaxation, the statements only become reusable and thus truly
composable if we understand how the until-relaxation interacts with the other
elements of the framework. For this, first observe that equality up to some point
is monotone, i.e., if two resources are equivalent up to some point, they are
also equivalent up to every earlier point. This furthermore implies that two
until-relaxations add up in the natural manner, as follows.

Theorem 4. Let R and S be two resources, and let Py and Py be two monotone
predicates. Then, we have

untilp, (R) = untilp, (S) = untilp,vp,(R) = untilp, v p, (S).

In particular, for every specification R, we have RF1l C (Rpl])PQ] C RPVE],

Proof. The first property follows directly from the definition of the until()
projection. In order to prove the second property, let S € (RP 1])P2]. Then,
there exists T € R7*) such that untilp, (S) = untilp, (T). Moreover, there exists

R € R such that untilp, (T) = untilp; (R). By the first property we, thus, obtain
untilp, v p, (S) = untilp, v p, (T) = untilp, v p, (R), concluding the proof. O

Furthermore, on a positive note, the relaxation is compatible with both proto-
col application and parallel composition, as expressed by the following theorem.
Those compatibility properties—analogously to Corollary 1—also directly imply
sequential and parallel composition properties. For the lack of use, we however
omit explicitly stating them.

Theorem 5. The until-relaxation is compatible with protocol attachment, i.e.,
W(RP]) - (ﬂ'R)P] and with parallel composition, i.e., [RP],S] C [R, S} Pl

Proof. A proof is presented in Appendix B.2.

Unfortunately, however, the until-relaxation does not commute directly with
the e-relaxation, as expressed by the following theorem.

Theorem 6. There exist specifications R and S, a monotone predicate P, and
a function € mapping distinguishers to values in [0,1] such that

(R 2 (R)T and (897 ¢ (7).
Proof. The proof can be found in Appendix B.3.

This not only raises the question which order actually corresponds to the
intuitive interpretation of such a combination—the set of all systems which
behave equally until the condition is triggered assuming the assumption of € is
valid—but also restricts reuse of such statement. That is, if one construction
assumes S¥1 to obtain 7, and another one constructs S¢ instead, then adjusting
the former construction to assume S¢ instead is non-trivial. As a consequence,
we will introduce a combined relaxation in Section 4.3, resolving both issues.

18



4.2 Guarantees From Some Point On

In this section, we now consider the complementing type of guarantees: guarantees
that only hold from a certain point on. Formalizing such guarantees in a model
where an adaptive environment interacts with the resource is, however, quite
delicate. In this work, we thus opt for a rather simple (and restricted) version of
it, where we use again a monotone condition on the global event history. We then
define the projection that disables access to a system R before that condition is
met. Clearly, the condition must rely on “external” events only (the ones not
controlled by R), i.e., satisfying it must not require accessing the resource itself.

Definition 6. Let P(£) denote a monotone predicate on the global event history.
For a resource R, let fromp(R) denote the resource that behaves like R, except
that it only accepts queries once P(E) is true (and before only returns L ).

For instance, the resource fromgll—:eakzd (SecCh) only answers queries once the envi-
ncKey

ronment triggered the event 5||5er?ck§§y~ Thus, in contrast to SecCh, this resource

always leaks the full message of the adversary, in line with our intuition that it
describes the behavior after the key has been exposed. A formal definition of the
resource is depicted in Appendix B.1.

Based on this projection, we now introduce the corresponding relaxation.

Definition 7. Let P(£) be a monotone predicate, indicating from which point
on the behavior must be the same as the one of the resource R. Then, the induced
relazation on a resource R, denoted RIY, is defined as

RIP = {S | fromp(R) = fromp(S)}
We call such a relaxation generally a from-relaxation.

The way the from-relaxation interacts with the other elements of the theory is
analogous to the until-relaxation. First, two from-relaxations add up naturally: if
we relax the guarantees offered by a specification to only hold from the moment
P, is satisfied, and then further relax them to only hold once P; is satisfied, then
the guarantees only hold once P; A P, is satisfied.

Theorem 7. Let R and S be two resources, and let Py and Py be monotone
predicates on the global event history. Then, we have

fromp, (R) = fromp, (S) = fromp,rp,(R) = fromp, A p, (S).
In particular, for every specification R, we have Rt C (R[Pl) [P C RPNz,
Proof. The proof is analogous to the one of Theorem 4.

Second, the relaxation is compatible with protocol application and parallel
composition, which moreover implies that it graciously interacts with the basic
construction notion.
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Theorem 8. The from-relaxation is compatible with protocol application, i.e.,
TI'(R[P) - (71'73) P and with parallel composition, i.e., [R[P,S] C [’R, S} [P.
Proof. The proof is analogous to the one of Theorem 5.

Analogously to the until-relaxation, the from-relaxation, however, does not com-
mute with the e-relaxation.

Theorem 9. There exist specifications R and S, a monotone predicate P(E),
and a function € mapping distinguishers to values in [0, 1] such that

(RP) 2 (RY) and (89" ¢ (17"
Proof. The proof is presented in Appendix B.4.

Finally, consider the interaction between the from- and the until-relaxation.
While the from-projection and the until-projection commute, i.e.,

from p, (untilp, (R)) = untilp, (fromp, (R)),

it is an interesting open question whether the two respective relaxations actually
commute. As a consequence, we introduce a combined from-until relaxation in
the next subsection.

4.3 The Interval-Wise Relaxation

As we have seen, the e-relaxation commutes neither with the until-relaxation
nor the from-relaxation, and its unclear whether the from- and until-relaxations
do. This impedes modularity and reusability of the statements. Furthermore,
it also deteriorates the intuitive semantics of the statements: if for instance we
want to express that a system behaves like a certain ideal up to some point, and
under certain computational assumptions, which order of the relaxations is the
right one and should be proven? To alleviate those issues, in this section, we
introduce two combined relaxations that build on the atomic ones introduced in
the previous section. We then show that they both have natural semantics and
clean properties.

First, we consider a relaxation that combines the from- and until-relaxation,
thereby alleviating the issue that those relaxations might not commute.

Definition 8. Let Pi(£) and Py(E) be two monotone predicates, indicating from
when until when the resource must behave like R. We then define the following
relazation

RIPLP2] = {S | untilp, (fromp, (R)) = untilp, (fromp, (S)) }.

While this combined relaxation apparently neither corresponds to (R[P 1)P2]

nor (RP 2]) [P17 it interestingly corresponds to the transitive closure thereof. Taking
the transitive closure, moreover, also restores symmetry, i.e., S € Rl o R e
SIPLP2] ost by each of the two individual combinations. Overall, this indicates
that the combined relaxation best corresponds to the intuition of the “almost-as-
good” relation it should intuitively represent.

20



Theorem 10. For any resource R and any monotone predicates Py and P, we
have

R[P1.P2] _ U (U{R¢1'¢2”'¢" | Vi <n:¢; € {P], [Pl}})

nelN
= (™) = (Re™)

where R?1?2%n s q shorthand notation for first applying ¢1, then ¢o, until ¢,,.
Proof. The proof can be found in Appendix B.5.

We can now leverage this alternative definition to directly derive properties
about the combined relaxations based on the proven properties of the two
underlying ones. In particular, we can show that two such relaxations add up in
the expected manner and are compatible with both protocol application as well
as parallel composition.

Theorem 11. For every specification R, and all monotone predicates Py, P,

P|, and P}, we have (R[Pl’PZ])[P{’Pé] C RIPIAPLP2VP;]
Proof. This follows directly by combining Theorcms 4, 7 and 10. ad

Theorem 12. The combined relaxation is both compatible with protocol ap-
plication, i.e., ﬂ(R[Pl’PZ]) C (TI'R) [Pr. 2] and with parallel composition, i.e.,
[RIP1P 8] C [R, 8]

)

Proof. By Theorem 10 we have that R[] = ((R[P1 . Using the com-

patibility of the from-relaxation and until-relaxation, i.e., Theorems 5 and §,
directly implies the desired properties. a

As we have seen, neither the until- nor the from-relaxation commute with the
computational e-relaxation, and the same holds true for the from-until-relaxation
as well. As a consequence, neither (RI0P21)¢ nor (R€)[F1:72]) seems to capture
the set of all systems that behave like R in the interval [Py, P;] assuming that
the computational problem encoded in € is hard. In the spirit of the combined
from-until relaxation, we solve this issue by introducing a combined relation.
Since the e relaxation is not idempotent, but the epsilons add up, taking the
transitive closure, however, does not match the desired relaxation but the following
restricted version of transitive closure does.

Definition 9. For two monotone predicates Py and Py, and a function € mapping
distinguishers to values in [0,1], we define the following relazation:

R[Pl,PQ}:e — ((R[Plvpz])€) [P1,P2]’

and call such a relazation an interval-wise relaxation.
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We now prove that the interval-wise relaxation has all the desired properties.

Theorem 13. Let P, and P»> be two monotone predicates, and let € be a function
mapping distinguishers to values in [0,1]. Then, for any specification R we have

’ . ’
(R[Pl,P2]:e) [P1.Py):e C R[PIAP17P2VP2]~E[P1AP1’,szPZ’]J'_e[Pl/\P{,szPé]

3

where E[Pl/\Pl/’P2\/P2/](D) = ¢(D o untilp,y p; o fromp, rpr), i.e., the performance
of the distinguisher interacting with the projected resource, and analogously for

/
€[PLAP], P,V P
Proof. The proof can be found in Appendix B.6.

Theorem 14. The interval-wise relazation is compatible with protocol appli-
cation, i.e., Tr(R[Pl’PQ]‘C) C (WR) [P, Pol:ex

[R[P1,P2]:e’ S] C [R7 S] [P1,Ps]:es )

and with parallel composition, i.e.,

o [P1,Ps)
Proof. By definition we have RIP1P2le .= ((R[Plvpz]) ) o Using the compat-

ibility of the e-relaxation and the from-until-relaxation, i.e., Theorems 3 and 12,
directly implies the result.

4.4 The Resulting Construction Notion

Based on the interval-wise relaxation, we now introduce our new construction
notion. To this end, let {2 denote a set of tuples (Py, P, ¢€,0), where Py and Py
are monotone predicates on the global event history, € is a function mapping
distinguishers to values in [0, 1], and o denotes a simulator. We then consider
constructions of the following type:

R () (o)
(Pl,PQ,é,O')G.Q

That is, each element in {2 describes a time-interval in which the elements in TR
can be abstracted as elements in S—with respect to the simulator o and error e.

Application to the running example. In our example, we want to phrase
that the symmetric encryption protocol constructs the secure channel from the
authenticated one and the key in the corresponding intervals.

Proposition 6. Let menc = (Tenc, Tdec) denote the protocol securing communi-
cation using a symmetric encryption scheme. Then, for the resources in Figure 1,
there exist (efficient) simulators o1, o2, and os such that

[EncKey,AuthCh]Eﬁ% ﬂ (Usecch)[PlaPQ]ZE
(Pl,Pz,e,O')E.Q
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for
._ leaked leaked leaked
2= { (true’ 5EncKey v 5AuthKey7 €CPA, 0-1)7 (gEncKeyv false,0, 0-2)7
leaked
(SAuthKey, false, 0, 0'3) }7

where ecpa denotes a simple reduction from distinguishing the secure and authen-
ticated channel (without key leakage) to the IND-CPA game.

Proof. A proof sketch is presented in Appendix B.7.

Composition. Finally, we finish the section by stating the composition guaran-
tees of this type of construction statement. It follows directly from the properties
proven about the interval-wise relaxation in Theorems 13 and 14.

Theorem 15. Let R, S, and T be arbitrary specifications, let w and 7' be
arbitrary protocols, and let {2 and 2’ be arbitrary interval-wise guarantees. Then,
we have

R T ﬂ (O_S)[P1,P2]:e A S "T_'> ﬂ (0_17—) [P],P3]:€’
(Py,Ps,e,0)E (Pl',Pz’,e/,o”)EQ/

w'om 14\ [PLAP] ,PsV PL]:€

= RI=L ﬂ (oo’ T)IPAAPL PV P2l
(P1,Ps,e,0)€02
(P],PS.e 0" )es?

where € := (€x')p,ap! Pyvpy + (€6) [P AP Py py - Furthermore, we have

R = ﬂ (O'S)[Pth]:e:[R,T]l—) m (U[S’TD[PLPQ]:W.

(P1,P2,e,0)ER (P1,P2,6,0)€ER
Proof. The proof is stated in Appendix B.8.

Note that this construction notion subsumes all those previously introduced
in this work. In particular, instantiating P; = true, P, = false, ¢(D) = 0, and
o =id, i.e., the identity converter, yields (idS)[““e’false]:0 = S. As a consequence,
the above composition theorem also allows to combine constructions according
to each of the notions introduced in this work. For instance, in our example, we
can compose the construction of AuthCh from Proposition 4 (according to the
standard notion) with the interval-wise construction of SecCh from Proposition 6.

5 Application to Commitments and Coin-Tossing

In this section, we present a composable formalization of (perfectly binding)
commitments that can be constructed in the plain model. To this end, we
formalize the properties of commitment schemes—correctness, binding, and
hiding—each as individual specifications. Thereby, hiding is formalized using the
interval-wise guarantees introduced in the previous section. We then apply Blum’s
coin-tossing protocol on top of it. While, obviously, the resulting specifications
are not sufficient to be used as a CRS, we show that it is unbiased.
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5.1 Information-Theoretically Binding Commitments

While UC commitments [6] provide clean and strong guarantees, unfortunately
they intrinsically require setup assumptions such as a common reference string.
Nevertheless, for many protocols, regular commitments only satisfying the classical
game-based properties seem to suffice. This raises the question: can we formalize
a weaker yet composable security notion for (non-interactive) commitments?

In Constructive Cryptography, the security of a commitment scheme is formal-
ized using three different constructions [17], for each set of potentially dishonest
parties (ignoring the case of both parties being dishonest). Typically, this is
presented as one construction parametrized in the set of honest parties, where
the ideal specification consists of a filtered resource. That is, for each party P, a
filter ¢p is specified that when connected to the resource limits the honest party’s
capabilities. However, there is no fundamental reason for those three construction
statements’ specifications to be of some unified type. As a result, we henceforth
focus on specifying each property—hiding, binding, and correctness—individually,
starting with correctness.

Definition 10. Let meom = (74, 7E.) denote a non-interactive commitment
protocol where A commits a value m € M towards B. The scheme is said to be
(perfectly) correct if

[Ch?_}B, Chg—)B:I TCcom Com‘)\;)B,
where Comf\;’B denotes the commitment resource defined in Figure 3, and Chy™®
and ChgﬁB denote two single-message communications channels® from A to B.

Now we proceed to formalize the hiding property. On an intuitive level,
(computational) hiding of a non-interactive commitment scheme requires that the
commitment string must not reveal any information about the committed value
to the receiver B, until the commitment is opened. Clearly, we can directly apply
our notion from Section 4 and formalize this using an interval-wise relaxation.

Definition 11. Let meom = (72, 7E,.) denote a non-interactive commitment

protocol. Then, the scheme is said to be (computationally) hiding if

A opened
A—B A—B] Tecom B A—B) [true, %] ¢
[Chl 5 Chz ] — (UcomCOmM ) s

B

om and some computational assumption encoded in e.

for some simulator o

The situation is more challenging with binding. The UC formalization, and
analogously Comlj\;> B requires that the adversary inputs the value to which
it commits to in the initial phase, in order to formalize that it then cannot
be altered anymore. This, however implies that the simulator must be able
to extract the value from the commitment string, fundamentally contradicting

3 That is, a channel that allows the sender to input a single message once. For simplicity,
assume that the channel has guaranteed immediate delivery, i.e., whenever the sender
has input a message, the receiver can fetch it.
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Resource Com’y;® and Com‘j\z}} with f: {0,1}* > MU{L}

Initialization Interface A (continued)

v L Input: (open,z) € M
require £°™M and only called once
if © = v then

£ <i gopened
output ok

Interface A
Input: (commit,z) € M
require _\gcommitted

VT
£ <i gcommitted

Interface B

output ok Input: isCommitted
Input: (commitRaw,c) € {0,1}* output £
. committed

require —& Input: read
v+ f(c) so copened

T+ ccommitted ire then
E+ & output v
output ok else

output L

Fig. 3: The commitment resources for message space M. In the basic version,
Alice has to specify the value at the time of commitment, whereas in the unfiltered
version she additionally has the ability to commit to f(c).

the hiding property in the plain model. Since such a formalization is just one
(albeit convenient) manner to specify that the value is fixed at the end of the
commitment phase, we circumvent this impossibility in another manner. To
this end, we consider perfect (or information-theoretically secure) commitments
only, where the commitment string uniquely determines the committed value.
We leverage this considering a resource Comf\z l}, depicted in Figure 3, which
allows the dishonest A to input an arbitrary string x in order to commit to the
value v = f(x). Here, f: {0,1}* — M U{L} denotes an arbitrary function that
maps the commitment string either to a message m, or to L indicating that it is
malformed.

Definition 12. Let weom = (7rA 72.) denote a mon-interactive commitment

com? com

protocol where A commits a value m € M towards B. Then, the scheme is said to
be perfectly binding if there exists an efficient simulator ok, such that

B

[Chi™, Chs "] Z=my Lo Com’(5 | f: {0, 1} — MU {L1}},
where Com‘j\z l} denotes the extended commitment resource defined in Figure 3.

As a side note, note that the resource Com’j\j B can trivially be expressed as a
filtered version of Comﬁ\z ?c, where the filter ¢, removes access to the commitRaw

oracle. That is, we obviously have gbAComl}\Z]} = Comﬁ\jB for every function f.

Remark 1. Observe that the function f is not necessary efficiently computable.
Actually, for a hiding scheme, f cannot be efficiently computable. This, however,
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does not imply that the overall specification has to contain resources that are not
efficiently implementable, as clearly the real-world resource is efficient, and yet
corresponds to UACom‘j\Z ]jc for an inefficient f. In other words, the decomposition,
containing the inefficient resource, is just one way of describing an overall efficient
resource. The specification could, thus, be restricted to consist of only efficient
resources, which we did not make explicit here focusing only on the security
properties. This is somewhat reminiscent of the solution proposed by Broadnax
et al. [4] to deal with inefficient simulators in a manner that retains the expected
composition guarantees.

ElGamal commitments. We briefly consider a variant of ElGamal commit-
ments as a concrete instantiation of the above formalized notion. Let G = (g)
denote a cyclic group of order n with generator g.

— To commit to a message m € G, ((¢%,g°,m - g?), (a,b)) + Commit(m)
for a,b € Z, uniformly at random. That is, the commitment string is
(g%, g%, m - g?°) and the opening value (a, b).

— Open((c, A, B), (a,b)) :==c- g~ % if A= g% and B = ¢°, and L otherwise.

Proposition 7. Let mgg.com denote the pair of converters implementing the
aforementioned ElGamal commitment scheme (c.f. Appendiz C.1 for a formal def-
ingtion). Then, TEiG.com Satisfies correctness, hiding (under the DDH assumption),
and binding according to Definitions 10 to 12, respectively.

Proof (Sketch). Tt is easy to see that the our correctness condition holds. Further-
more, with the simulator ¢ outputting a random triple of group elements as
commitment string, hiding holds under the DDH assumption, i.e., for € encoding
an appropriate reduction to the DDH problem. Finally, consider the function
f that maps (U,V,W) € G> to W - g~ PLs(U)-DLs(V) and all other bit-strings
to L. For this function, it is easy to see that a simulator ¢ exists such that
the construction that formalizes binding holds. See Appendix C.1 for a formal
description of the respective simulators. a

5.2 Coin-Tossing

In this section, we consider Blum’s simple coin-tossing protocol [2]. The protocol
assumes to have a commitment resource from Alice to Bob, and a communication
channel in the reverse direction, at its disposal. It then proceeds as follows: Alice
chooses X € {0, 1} uniformly at random and commits to it. Once Bob is sure
that Alice committed, he chooses Y € {0,1} uniformly at random and sends it
over to Alice (in clear). Finally, Alice opens the commitment and both parties
output Z =X @Y.

Clearly, this protocol does not provide fairness—even when instantiated with
a UC-secure commitment. This is due to the fact that both parties can always
choose to abort the protocol by not responding, and in particular Alice can do
so after she has seen the result. When instantiating the commitment with the
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resource constructed in the last section, one even obtains a weaker resource. Note
that this is inherent for our construction being in the plain model, as otherwise it
could be used as the bit of a CRS, contradicting well-known impossibility results.

In a nutshell, the resource obtained by our construction guarantees that the
output is not biased, but does not exclude that during the opening phase, one of
the parties learns some trapdoor allowing it to distinguish it from a uniformly
random value. For example, our formalization would allow the resulting bit to be
the first bit of a PRG’s output, while leaking the seed during the opening phase.
Note that such a coin toss resource is still useful, for instance for lotteries. First,
if the resulting bit is just used to determine which party gets some good, then
bias-resistance is obviously good enough irrespective of the fact that the parties
might be aware that the result is only pseudo-random. Second, in a simple lottery
where people’s preferences are obvious, fairness can be achieved by declaring the
party that caused the abort to have lost.

The coin-toss resource. The ideal specification is expressed in terms of the
resources CTIj\’,ll3 and CTIj\’/]t3 It where the former denotes a restricted version of the

latter. The resource CTﬁ\’j’ initially draws an element Z € M uniformly at random.
In order for the coin-toss Z to become available to the parties, A has to initiate
it, and B has to respond afterwards. From this point on, A can obtain Z and then
decide whether the value should also be released to B. In the resource CTﬁ\’/ll3 7o A
furthermore can query once a leakage f(c), of some potentially inefficient function
f. A formal definition of the resources can be found in Figurc 4.

The constructions. First, consider correctness. It is easy to see that the
following construction holds, i.e., two honest parties actually get to agree on a
uniform random bit.
Proposition 8. Let wcr == (7ér, meq) denote the pair of converters implement-
ing Blum’s protocol (c.f. Appendiz C.2 for a formal definition). Then, we have
A—B B—A] 7cCT A,B
[Com{O,l}’Ch } " CT{o,1}a

and thus
[ChI{HB,CthB’ChBHA] TCTOMeom CT?’&I},
for any commitment scheme Teom satisfying Definition 10 (correctness).
Second, consider the guarantee for an honest initiator A.

Proposition 9. Let wcr == (7é1, meq) denote the pair of converters implement-
ing Blum’s protocol. Then, there exists an efficient simulator og1 such that

[Comy7ty, Ch® 7] 25 024 CTYR,

and thus, for any commitment scheme Teom satisfying Definition 11 (hiding), we
have

A A opened], ~
A—B A—B B—A] 7CT°Tcom B B AB [true,E°P"C]:€
[Chl ’ Ch2 ) Ch } 7 (JcomUCTCT{Q’l}) )
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Resource CT%} and CTf\f’f with f: {0,1}* - MU{L}

Initialization Interface A (continued)

Z«_ M Input: release
initiated, responded, released < false

require responded and only called once

+ d

Interface A E + gopene
Input: init released < true

output ok

require “gcommitted
initiated <— true
£ <i gcommitted

Interface B

Input: isInitiated

output ok
put o output initiated
Input: read
. Input: respond
require responded require initiated
output Z

responded < true

Input: (getleakage,c) € M output ok
require only called once
output f(c)

Input: read

require released
output Z

Fig. 4: The coin-toss resources for coin space M. In the unfiltered version, Alice
additionally has the capability to once obtain a leakage to f(c), where f is a
parameter of the resource. Note that neither version provides fairness, as Alice
can always chooses to not release the value after having seen it.

with € == (eUgT)[true’ gopenca]

Proof. Recall that Com?;f} only reveals the value X to Bob after he sent his
value Y. Hence, X and Y are independent and with X chosen uniform at random
by Alice, implying that Z = X @& Y is a uniform random value. Hence, using the
simple simulator o¢; that simulates the output of the commitment resource as
X =Z @Y (see Appendix C.2 for a formal definition), it is easy to see that the
construction actually achieves the coin-toss resource perfectly. O

Note that this implies that the output Z that Alice obtains looks indistinguishable
from a uniform random value until the value is released for the dishonest party.
Hence, while it is not guaranteed that the dishonest party does not learn some
trapdoor afterwards, the value Z is at least unbiased.

Finally, consider the security guarantees for an honest party B against a
potentially dishonest party A. To this end, we turn to the unfiltered resources
Com?a’f}y 5 and CT?&}, > where the latter once allows Alice to obtain f(c) for a
¢ of her choice.

Proposition 10. Let et = (ngq, meq) denote the pair of converters imple-
menting Blum’s protocol. Then, there exists an efficient simulator oy such
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that
{[Comig’}) ;. CR®74] | f:{0,1}* — {0,1,1}}
5 {otrCTiS | £ 40,1 = {0,1, 13},

and thus, for any commitment scheme Teom satisfying Definition 12 (binding),
we have

[ChY™®, Chg 8, ChP 4] Zmem, (od obr TSy, | F1 {0, 11 = {0,1, 1} }.
Proof. Consider the real-world system resulting from attaching Bob’s converter
only, for some function f. Interacting with this resource, the environment can
input a commitment string C at Alice’s interface, then see Bob’s bit Y at Alice’s
channel interface, and finally see the resulting bit Z = f(C) @Y as the output
of Bob’s converter. In the following, consider the ideal-world system with the
same function f as in the real world. It is now easy to see that a simulator can
easily replicate the real-world behavior by getting Z from the resource, querying
the leakage-oracle on C' getting f(C'), and then setting Y = Z @ f(C). A formal

definition of the simulator o2 = can be found in Appendix C.2. O

As a final note, observe that formalizing Bob’s security guarantees for the
commitment resource in terms of an interval-wise relaxation, rather than in-
troducing the unfiltered resource CT?&L 2 would not work. This is due to the
fact that in the real world Y (requiring the additional capabilities to simulate)
is output at Alice’s interface before Bob sees Z. Hence, simulating only until
Alice sends Y would not give any guarantees on Bob’s output. In summary, this
demonstrates Constructive Cryptography’s advantage of being able to consider
different types of statements within one (meta-)framework.

6 Revisiting Composable Identity-Based Encryption

In this section, we reexamine a result by Hofheinz, Matt, and Maurer [10] implying
that IND-ID-CPA security is not the right notion for identity-based encryption,
unmasking this claim as an unnecessary framework artifact.

6.1 Background and Motivation

Identity-based encryption (IBE) is a generalization of public-key encryption that
allows to encrypt messages using a master public key and the identity of the
receiver, e.g., the e-mail address. This stands in contrast to a regular public-
key encryption scheme, where the encryption needs the receiver’s public key,
suggesting IBE as a solution to the key-distribution problem.

An IBE scheme IBE := (Gen, Ext, Enc, Dec) consists of four algorithms. The
key generation algorithm (mpk, msk) < Gen(1*) outputs a master public and
a master secret key (given the security parameter as input). The extraction

29



algorithm sk;q < Ext(msk, id) outputs a user secret key given the master secret
key and the user’s identity. Encryption ¢ «— Enc(mpk, id, m) outputs a ciphertext,
and m’ < Dec(skq, id,c) the corresponding plain-text. For correctness, it is
required that for all (mpk, msk) < Gen(), all identities id, all messages m, and all
skiq < Ext(msk, id), we always have Dec(sk;q, id, Enc(mpk, id, m)) = m. Security,
on the other hand is classically formalized via game-based definitions. For security
against passive attacks, the standard notion is ind-id-cpa, as depicted in Figure 5.
Weaker notions have been proposed as well, such as a version ind-sid-cpa, depicted
in Figure 5 as well, where the adversary has to choose the identity under attack
without knowing the master public key.

ind-id-cpa

Game EXplBE ) ind-sid-cpa

ind-id1-
Game EXplBEA ind-id1-cpa

Game Expge 4

b« {0,1}
(mpk, msk) < Gen()
(st, id, mo, m1)
«— AExt(msk,-)(mpk)

b« {0,1}
(mpk, msk) + Gen()
(st, id) « A()

(st’, mo, m1)

b« {0,1}

(mpk, msk) + Gen()
st AB(msR) ()
(st',id, mo, m1)

¢ < Enc(mpk, id, myp)
b o~ .AEXt(ms}c’.)(St, C)
return b = b’

. AExt(msk,Q (st, mpk)
¢ < Enc(mpk, id, myp)
b AExt(msk,-)(St/’c)

«— A(st, mpk)
c < Enc(mpk, id, myp)
b o AExt(msk,-)(St/’C)

return b =0’ return b = b’

Fig. 5: Three game-based security definition of identity-based encryption against
passive attacks. The standard security definition (left) has been put forward by
Boneh and Franklin [3]. Later, the weaker static security notion (middle) has
been introduced in [7] by Canetti, Halevi, and Katz. Finally, Hofheinz, Matt, and
Maurer proposed a version that loosely corresponds to the standard definition
under “lunchtime attack” (right). Note that in all of them, A is not allowed to
query the Ext oracle on the identity it output.

Hofheinz, Matt, and Maurer [10] investigated the composable security of
IBE in Constructive Cryptography from an application centric point of view. To
this end, they considered non-interactive communication, the apparent standard
application of IBE. Assume that there is a trusted party that stores the master
secret key and handles registration, i.e, hands out the user secret keys to the
correct users. A set of users, each knowing the master public key and his user
secret key(s), can now confidentially send messages to each other by encrypting it
under the receiver’s identity. The obvious security goal is that only the legitimate
receiver can read the message. In turned out, however, that the standard ind-id-cpa
security does not imply such a construction in the standard simulation-based
construction notion—even when considering static corruptions only—due to the
commitment problem. They, however, managed to show that such a scheme suffices
in a weaker setting where it is guaranteed that all identities are registered before
the first ciphertext is ever sent. Furthermore, the authors also introduced a new
weaker security notion ind-id1-cpa, that essentially considers “lunchtime attack”
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and proved that it suffices for the same construction. They hence concluded, that
the standard notion is at the same time both too strong (to achieve the weaker
construction) and too weak (to achieve the desired construction).

Since the weaker construction is not very realistic, e.g., in a company it is
natural that new employees join long after the first ciphertext has been sent,
the question about the right security definition remained open. In the remainder
of this section, we devise a natural composable formalization based on interval-
wise guarantees whose security exactly corresponds to the standard ind-id-cpa
notion—resolving the issue.

6.2 The Real and Ideal Worlds

On a high level, Hofheinz et al. considered non-interactive secure communication
in a setting with one honest sender A, n potentially dishonest receivers B;, and one
honest party C deriving and distributing the user secret keys. We here consider
the same setting with essentially the same resources as in the original work.

In the real world, we assume that the sender A has a broadcast channel
BCAST,, available, through which the ciphertexts are sent. For simplicity, we will
assume guaranteed delivery throughout the rest of the example. Furthermore,
we assume the existence of an authenticated channel AUTH% ™ from C to A to
transmit the master public key Alice needs for encryption, and n secure channels
SEC%HBI' from C to B; to transmit the user secret keys. A formal description of the
corresponding resources can be found in Figure 6. Recall that we consider static
corruptions here. Hence, the set of corrupted parties P appears as an explicit
parameter of the resources.

The protocol securing the communication works as expected: whenever Alice
wants to send a message to a certain identity, she encrypts it under the given id
and broadcasts the ciphertext together with the identity. Each honest receiver
then checks whether he has the corresponding decryption key, i.e., has been
registered for this identity, and either decrypts the message or discards it. Finally,
Charlie’s protocol not only sends the master public key to Alice, but also allows
to register identities for each receiver. Note that each identity can in principle be
registered to many interfaces, i.e, many parties can posses the same user secret
key. Furthermore, the assignment is not fixed but chosen by the environment,
modeling an arbitrary or even adversarially chosen assignment. For completeness,
a formal description of the corresponding converters ¢, _ ,, Tp.., and 7, is given
in Figure 7.

Finally, consider the ideal resource DCC%?W7 which stands for delivery con-
trolled channel. The name derives from the fact that the encryption can be seen
as a mechanism with which the sender can specify to whom the message should
be delivered. Hence, the resource acts like the broadcast channel, except that
each message is only received by parties registered for the specified identity.
Other dishonest parties may learn the message length, while honest parties ignore
messages not intended for them. Furthermore, dishonest party might also learn
which receiver is registered for identities (as the secure channel leaks the length
of the user keys, which might depend on the identity). A formal definition of the
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Resource AUTH% ™ Resource SEC},"®"

Initialization Initialization
M <+ empty array M <+ empty array
j<0 j+0

Interface C Interface C

Input: (send, m) € M Input: (send,m) € M
jg+1 J<i+1
MJj] +m M[j] « m
output ok output ok

Interface A Interface B,

Input: (read, k) eN Input: (read, k) € IN
require k < j require k < j
output MI[k] output M [k]

Interface B;, for i € P Interface B; for i € P\ {r}

Input: .(read, k)' eN Input: (read, k) € N
require k < j require k < j
output M|[k] output |M[k]|
Resource BCAST,,

Initialization Interface B;, for i € {1,...,n}
M + empty array Input: (read, k) € IN
j«0 require k£ < j

________ 1

Interface A £ & Eread(i’k):

Input: '(send, m) € M 'O'u;l;u]; _j\/_[[k}
j—J+1
M« m
output ok

Fig. 6: Description of the assumed resources. The set P C {1,...,n} thereby
specifies the set of statically corrupted receivers B;, while the sender A and
registrar C are assumed to be honest.
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A
Converter mg,,

B;
Converter 7.

Initialization Initialization
mpk « L SK < empty array
j<+0 j+1

Emulating Interface A of DCCig)»p

Emulating Interface B; of DCC%?,,

Input: (send, id,m) € ID X M
require j <t
if mpk = L then
call mpk < (read)
at interface A of AUTH?P_’A
if mpk # L then
¢ < Enc(mpk, id, m)
call (send, (id, ¢))
at interface A of BCAST,,

return ok
else
return L

\.

Input: (read,id, k) € ZD x IN

// fetch all pending user keys
repeat
call (id’, sk) < (read, j)
at interface B; of SEC
if (id’, sk) # L then
SK[id'] + sk
j<—i+1
until (id’, sk) = L

C—B;
P

// fetch message and decrypt if possible
call (id, m) + (read, k)
at interface B; of BCAST,,
if (id,m) # L A SK[id] # L then
return Dec(SK[id], id, c)
else
return L

c
Converter ¢,

Initialization
mpk, msk < L

Emulating Interface C of DCC%?,P

Input: init
require only called once
(mpk, msk) < Gen()
call (send, msk)
at interface C of AUTH%,_m
return ok

CI‘D

Emulating Interface C of DCC. " »

Input: (register,id,i) € ZD x {1,...,n}
require msk # L
sk < Ext(msk, id)
call (send, (id, sk))
at interface C of SEC

""""" I
:6 g gregistred (id, i)

C—B;
P

1
__________ [

return ok

Fig. 7: A formal description of the converters using IBE to achieve confidentiality.
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D
Resource DCC; %

Initialization Interface B; for i € {1,...,n}
M — empty array, j < 0, initiated <— false Input: (read, id, k) € ZD x N
for i€ {1,...,n} do require k < j

n; < 0, I; < empty array (id, m) < MIk]

Interface A g & gread(d |

Input: (send,id,m)€IDxM 7777777 : R ——
require initiated A j < t if 3¢: I,[¢] = id \/‘S'"sec(k) :then
j <+ J+1, M[j] « (id,m) output (id,m)_____

else if i € P then
output (id, |m|)

LT T T
lgissent(bzd)‘

output ok else
output L
Interface C
Input: init Interface B; for i € P (additional)
.rt?c.luire only called once Input: (identities, k) € {1,...,n}
initiated < true output Ij
Input: (register,id,i) € ZD x {1,...,n}

require initiated
n; < n; +1
I;[n;] < id
""""" I
:E <i gregistred(id,i) :
output ok

Fig. 8: The delivery controlled channel with an honest sender A, an honest registrar
C, and n receivers B;, with P C {1,...,n} denoting the statically corrupted ones.

resource is depicted in Figure 8. Note that compared to [10], we will use global
simulators rather than local ones, what allowed us to simplify the resource a bit.

6.3 The Composable Statement

One of the main results in [10] has been showing that, due to the commitment
problem, an IBE scheme does not construct the delivery controlled channel even
under static corruptions.

Proposition 11 (Theorem 5.1 in [10]). Let P C {1,...,n} denote the set
of statically corrupted receivers. For every efficient simulator U@E, we have

n,t,P

[BCAST,,, AUTHS ™ SECS ... SECS ™8] D89y (62 .DCCID ) s,
where €ind-id-cpa denotes a reduction to the ind-id-cpa game and
4P i
TrinBé = {ﬂ-énc,ﬂ ngt, } U U ’/TBDec

i€{l,...,n}\P

denotes the protocol where all honest parties apply their converter.
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In the end, one is however not interested in such a strong guarantee. Rather,
the above construction was just intended as a proxy to formalize confidentiality
of the messages. Using our approach, hence immediately yields a better statement
based on interval-wise guarantees. More concretely, we consider each message
individually and guarantee its confidentiality until it trivially leaks because a
dishonest party is registered for the corresponding receiver’s identity.

In the following, let £5¢"0:i@) indicate that the j-th message has been encrypted
for identity id, £registred(idi) indicate that the i-th receiver has been registered for
identity id, and £240:) that the i-th receiver read the j-th message. Moreover,
let £msecl) indicate that the j-th message is not confidential. See the dashed
boxed in Figure 8 for a formal definition of when those events get triggered in
the ideal world. Note that in the real world the former two events get triggered
in the converters m¢, , and 7§, respectively (c.f. Figure 7), whereas the third
one gets triggered in the underlying broadcast channel BCAST,, (c.f. Figure 6).
This is due to the fact that Alice and Charlie are assumed to always apply their
converter, while the dishonest receivers can access the broadcast channel directly.

Theorem 16. Let t € IN denote an upper bound on the number of messages, let

P C{1,...,n} denote an arbitrary set of statically corrupted receivers, and let
ngé’p denote the protocol where all honest parties apply their converter as in

Proposition 11. For each P, there exists a sequence of efficient simulators aré’Ej

and a reduction €ind-id-cpa to the ind-id-cpa game, such that

[BCAST,,, AUTH% ™", SECS ™™, ... SECS %]
n,t,P

TiBE P.j ID  \ [Ponly(j) s Peaked(j) | :€ind-id-cpa
’ rw (UBEDCCnmP) :

JE{1,....t}

where
Beaked(j)(g) =P 5sent(j,id) A gregistred(idﬁ) A gread(j,i)

formalizes the event that the j-th message inherently leaked, and

Ponly(j) (5) = /\ ginsec(e)
Le{1,...t}\{5}

formalizes that we do not consider confidentiality of the other messages.

Proof (Sketch). The simulator initially generates a master secret-key and master
public-key pair. Observe that for all messages except the j-th one, the ideal-world
resource outputs the actual message (together with the corresponding identity).
Hence, the simulator can simply encrypt it himself under the correct identity.
For the j-th message, observe that the simulator only has to work if none of
the dishonest receivers obtained the corresponding user key, and this key will
then never get revealed. Hence, the simulator can encrypt the zero-string of the
appropriate length. See Figure 9 for a formal definition of the simulator.
Observe that the reduction from distinguishing the real- and idea-world to the
ind-id-cpa game is straight-forward. For all but the j-th message, the reduction
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»J

P
Converter og;

Initialization

(mpk, msk) + Gen()

Emulating Int. B; of AUTH: " for i € P

Emulating Int. B; of BCAST,, for : € P

Input: (read, k) € N
if M[k] = L then
if k # j then
call (id, m) + (read, k)
at interface B; of BCAST,,
if (id,m) # L then
Mk] < (id, Enc(mpk, id, m))
else
call (id,len) < (read, k)
at interface B; of BCAST,,
if (id,len) # L then

Input: (read, k) € N
if k=1A3id: £ then
return mpk
else
return L

Emulating Int. B; of SEC;:BZ for i € P

Input: (read, k) € N
call Iy < (identities, ()
at interface B; of DCCig’,P
if I,[k] = L then
return L
else

M[k] < (id, Enc(mpk, id, 0*™)) sk < Ext(msk, I,[k])
else if £ =i then return sk
& & gread(k,i) else return |sk|

return M k]

Fig.9: The simulator from Theorem 16.

can simply query the game for the corresponding user key, and the challenge can
be chosen as (m;, 0lm3l). If b = 0, this corresponds to the real-world behavior,
and if b = 1 to the ideal-world behavior. a

Remark 2 (On interpreting conjunction specifications). Observe that phrasing our
statement for a bounded number of messages is without loss of generality in any
actual application. We, however, have chosen to do so for good reasons. Assume
for the moment that € is simply a constant in [0, 1]. If we have a specification of the
form (7., S, then this can be read as the guarantee given by S; holding with
probability 1 — €. In the end, we are however interested to know the probability
such that all guarantees hold. In general, the best we can do is to apply the union
bound, implying that the error is bounded by €| J|. As a result, it is important
that the number of conjunctions is small for the statement to be meaningful.
Especially, while we could prove an analogous statement with intervals terminated
by the leakage of each user key (rather than the messages), this would only make
sense if the identity-space is small, in which case ind-sid-cpa security would suffice.

7 Conclusion and Future Work

We have demonstrated that considering new types of resource specifications can
lead to security notions that are composable, yet do not suffer the artificial
impossibilities exhibited by the classical simulation-based definitions. We have
introduced a type of specification that formalizes guarantees that hold in a certain
time-interval (between two events), which has clean semantics, comes with a
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natural syntactical composition theorem, and integrates well with the existing
Constructive Cryptography framework. The usefulness of this type of security
guarantees has been shown by revisiting several examples where a composable
statement previously either needed additional trusted setup or less efficient
protocols compared to the corresponding game-based notions.

While our novel type of relaxation does not resolve every issue of composable
security, we ultimately believe that all (meaningful) security statements can be
expressed as an as assumed specification being contained in an ideal one. Further
work is, hence, needed to identify additional types of specifications that allow to
express more properties—while retaining strong syntactical composition rules
and clear semantics.
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A Details of Section 2

A.1 Proof of Theorem 2

Theorem 2. Let R be an arbitrary specification, and let €1 and €z be arbitrary
e-relaxations. Then we have (Rfl)62 C Rertez,

Proof. Let T € (R)2 be arbitrary. By the definition of the e-relaxation,

(Rﬂ)Ez — U {T | VD : |AD(57T)| < 62(D)}’
SER-L

there exists a S € R, such that for all D, AP(S,T) < e(D). Analogously,
invoking the definition of the e-relaxation once more, there moreover must exist a
R € R, such that that for all D, AP(R,S) < €;(D). Using the triangle inequality
we, thus, obtain

AP(R, T) < AP(R,S) + AP(S,T) < €,(D) + €1 (D),

and, hence, T € (Re1t€2) C (Re1tez), -

A.2 Proof of Theorem 3

Theorem 3. The e-relaxation is compatible with protocol application in the
following sense that w(R¢) C (wR)™, for ex(D) = e(Dmw(-)), where D ()
denotes the distinguisher that first attaches 7 to the given resource and then
ezecutes D. Moreover, it is compatible with parallel composition, i.e., [RE,S] C
[R,S]s, for es(D) := supsegs €(D[-,S]), where D[-,S] denotes the distinguisher
that emulates S in parallel to the given resource and then lets D interact with
them.

Proof. Let S € w (R) be arbitrary. Then, by definition, there exists a T € R€
such that S = wT. Observe that T € R¢ directly implies |AP (R, S)| < ¢, and thus

AP (7R, )| = | AP(xR, 7 T)| = |APTO) (R, T)| < e(Dr(-)) = ex(D),
implying S € (7R)™, i.e., compatibility with protocol application.
Now, let U € [RE,S] be arbitrary. Then, by definition there exists V € R¢
and S € S such that U = [V, S]. Moreover, by definition there exists R € R such
that |AP(R,V)| < e. As a consequence we obtain

|AP([R,S], U)| = |AP([R,S], [V, S]| = [APLVI(R, V)| < €(DI[ -, V]) < es(D),

and thus U € [R, ]S, concluding the proof. O
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A.3 Proof of Corollary 1

Corollary 1. For any specifications R, S, and T, any protocols w and ©’, and
any e-relazation € and €, we have

LR ISSNS T T — R T, Tewte
2. R 8 = [R,T] =[S, T,

where e; and €s are defined as in Theorem 3, respectively.
Proof. First, observe that by Theorem 3 we have
7w (R) C (7R)™ C S,

where in the second step we used Definition 1, ie., R — S : <= 7wR C S, and
Proposition 3. Now, observe that for the first property, by Theorem 2, we have

(TE/)E"' C Te~ ¢ Hence, we obtain S¢ = T+ and, thus, the property
then follows by Theorem 1. The second property follows from Theorem 3:

w[R,T] = [xR,T] € [S8,T| CI[S,T].

B Details of Section 4

B.1 Example: The Behavior of a Resource After an Event

Consider the following resource fromgllzeak;d (SecCh), which only answers queries
ncKey

once the environment triggered the event E'Eerfckﬁgy. Thus, in contrast to SecCh, this

resource always leaks the full message of the adversary, in line with our intuition
that it describes the behavior after the key has been exposed.

Resource fromgescs (SecCh)
ncKey

Initialization

Interface E

My[-] < L
mp — L
n<+ 0

Interface A

Input: (send,m)

require 85‘;’;&;

[rest as in SecCh]

Interface B

Input: receive

require SIIEE::;gy

[rest as in SecCh]

Input: (leak, i)
require Sllz_erfckﬁ:y

output M,[i]

Input: (inject,m)

require SE;:E:Y

[rest as in SecCh]

Interfaces {E,W}

Input: (deliver,i)
require Sllz_erfé‘;‘:y
[rest as in SecCh]
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B.2 Proof of Theorem 5

Theorem 5. The until-relazation is compatible with protocol attachment, i.e.,
TI'(RP]) - (WR)P] and with parallel composition, i.e., [’RP],S] C [’R, S} P].

Proof. For the first property, consider an arbitrary element of TI'(RP ]), ie.,
7T for an arbitrary T € RF). Hence, there must exist a R € R such that
untilp(R) = untilp(T). Using that untilp (7 untilp(R)) = untilp(7R) for any
resource R, implies

untilp(wR) = untilp (7 untilp(R)) = untilp (7 untilp(T)) = untilp (7 T)

and, thus, «nT € (7rR) Pl - (ﬂ'R) P]. The second property follows analogously
observing that untilp([untilp(R), S]) = untilp([R, S]) for all R and S. O

B.3 Proof of Theorem 6

Theorem 6. There exist specifications R and S, a monotone predicate P, and
a function € mapping distinguishers to values in [0,1] such that

(RPN 2 (RO and (597 2 (sP)".

Proof. In the following, let R denote the following resource that provides two
interfaces: R initially chooses a seed s € {0, 1} uniformly at random. Upon a
trigger input at the first interface it outputs PRG(s) (for some m-bits to n-bits
PRG). Upon a trigger input at the second interface, it triggers a £'®d event
and outputs s. Let the resource S work analogously except that it outputs a
uniformly distributed an independent value ¢ € {0, 1}" instead of the PRG output.
Furthermore, let P(£) := £'®¢d and let e denote the reduction to the security of
the PRG.

Using R := {R} it is now easy to see that S € (RF1)¢: Consider a hybrid
system T that outputs PRG(s’) and s for independent and s and s’ u.a.r. Then,
we have T € RP), since the first output is equally distributed and the second
blinded. Moreover, distinguishing T from S boils down to breaking the PRG-

security, and thus S € T¢. On the other hand, one can show that S ¢ (RE)P].
To see this, observe that if the PRG is secure, then R¢ ~ R. Especially, leaking
the seed prevents us from replacing the first output by a truly random string.
Thus, applying the until-relaxation still does not contain S, concluding the first
part of the proof. For the other direction consider S := {S}. Using an analogous

argument one can show that R € (SE)P] but R ¢ (SP])E. O

B.4 Proof of Theorem 9

Theorem 9. There exist specifications R and S, a monotone predicate P(E),
and a function € mapping distinguishers to values in [0, 1] such that

(R7) 2 (®R) wmd ()7 g (57)"
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Proof. The counter example works similarly to the one from Theorem 6. Consider
a resource R with two interfaces that initially chooses a PRG-seed s uniformly
at random. At the first interface it outputs PRG(s). At the second interface
it outputs s, but only before some event £%¢¢""®. The second resource S works
analogously except that it outputs an independent uniform random string at
the first interface instead of the PRG output. Let now R := {R}, § := {S}, and
P := {&Ur}. Analogous to the proof from Theorem 6, one can now show that

Se (RF) but S ¢ (’Re)[P7 and furthermore that R € (Se)[P but S ¢ (SI)°. O

B.5 Proof of Theorem 10

Theorem 10. For any resource R and any monotone predicates Py and Ps, we
have

R[P1P2] — U (U{R¢1'¢2"’¢“ | Vi <n:g¢; €{P], [P1}})

nelN
(Re)™) ™ = (Rm)7)"™

where R?1%2%n s q shorthand notation for first applying ¢1, then ¢o, until ¢,,.

Proof. We prove the theorem in three steps:

Claim. RIPvP2] = ((R[pl)Pz])[Pl

[P
Proof (of claim). Let S € ((R[Pl)P2]> " be arbitrary. This means that there
exist T € (R[Pl)PQ], U e R[Pr and R € R such that

fromp, (S) = fromp, (T), (1)
untilp, (T) = untilp, (U), (2)
fromp, (U) = fromp, (R). (3)

Combining these properties with the commutativity of from and until, we obtain

untilp, (fromp, (R)) = untilp, (fromp, (U)) = fromp, (untilp, (U))
= fromp, (untilp, (T)) = untilp, (fromp, (T))

= untilp, (fromPl (S))>

implying that S € RIP7 and thus RIS ((RIF) ™) "

Now, let S € RIP1P2] be arbitrary. By definition, we thus know that there
exists a R € R such that fromp, (S) € (fromp, (R))PQ]. Combining this with the
basic fact that fromp, (R) € R, we obtain fromp, (S) € (R[Pl)PZ]. Combining

P
this in turn with the basic fact that S € SIt then yields S € ((R[Pl)P2]> ' and

thus RIPP2l € ((R[PI)PZ])[PI. 0
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Ps)

Claim. RIP1:FP2] — ((RPQ])[H)
Proof (of claim). Observing that
RIPLP:] {S | until p, (fromp, (R)) = untilp, (from p, (S))}

(using the commutativity), it is easy to see that the proof follows analogously. ¢
Claim. RIP =, (U{RO4200 | Vi < n - 6y € (P, [PL}})

Proof (of claim). Using the previous claims, it is trivial to see that
RIPE C | (U{Rm%..m IVi<n:¢; € {P), [pl}})_
nelN

For the other direction, we proceed by induction over n. Note that without loss
of generality (by Theorems 4 and 7), we can assume the order of the relaxations
to strictly alternate. Furthermore, the previous claims already prove it for n = 3.
Hence, the relation is also trivial for n < 3, as adding a further relaxation only
enlarges the set. Assume now as the induction hypothesis that for some n > 3

RIFL-P] U{R¢1'¢2”'¢” |Vi<n:g¢;€{P)],[P1}}.
We want to show that R#1#2¢n+1 ¢ RIPLP a5 well. Assume w.lo.g. that
$ni1 = P»]. By the induction hypothesis, we have that R?1'¢2¢n ¢ RIPP2] and
P]
thus by the second claim R?1'¢2"¢n ¢ ((RPQ])[PI) * and thus

e (7)) = (67

where the second step follows from Theorem 4. O

B.6 Proof of Theorem 13

Theorem 13. Let P, and P> be two monotone predicates, and let € be a function
mapping distinguishers to values in [0,1]. Then, for any specification R we have

’ . ’
(RIPvPalieyPLRR o pIPANPL VIR oyt pav e oy vy

)

where E[Pl/\Pl/’P2\/P2/](D) = ¢(D o untilp,y p; ofromp, rpr), i.e., the performance
of the distinguisher interacting with the projected resource, and analogously for

/
€[PL AP, P,V P

Proof. Observe that it suffices to show

(((R[Pl/\Pl',PQ\/Pé])E>

[Pl/\Pll,PQ\/PQ/]>E/

PyAP],P,VP,
- ((R[Pl/\P{’Pz\/Pz/])e[PlvP21+5fP1,PzJ>[ e 2].
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The rest then follows trivially by Theorems 2 and 11. To this end, consider
, 1iv e\ [PLAP] P2V Py €
an arbitrary S € (((R[PIAPuPzVPz]) ) )

aT e ((R[Pl/\Pl’,PQ\/PQ’])E)[Pl/\PllvP2VP2/]’ alU e (R[Pl/\Pl/,Pg\/PZ/])€7 and a V €

RIPINP,P2VP] el that

. Hence, there must exist

|AP(S,T)| < €(D) (4)
untilp,y p; (fromp, A p; (T)) = untilp,y p; (fromp, o p; (U)) (5)
|AP(U, V)| < €(D). (6)

Using those properties, we obtain
|AD (untilp2vp2r (fromp, A p; (V)), until p, p; (fromp, o p; (S))) ’
< |AD (untilp,y py (fromp, A p; (V)), untilp,y p; (fromp, o pr (U))) ’
+ |AD (untilp,y p; (fromp, A p; (T)), untilp,y p; (fromp, o p; (S))) |

< ’ADountilPQ\/Pz/(~)ofr0mP1AP{(')(V U)‘ n ’ADountilpz\/Pz/(~)ofromP1AP{(~)(T S)’

< €pap;,pvpy (D) + €EP1AP{,PZVP;](D)-
Now observe that V € RIPIAPLP2VES] implies
untilpzvpé (fromplApll (V)) S R[Pl/\Pl’PQVPQ],
and thus,

. ’ 17\ € ’ /+6/
untilpyy g (fromp ppy (S)) € (RUPAPEPav Al teaorf ey ¥elmynnt ey

As a result, we have

[PLAP],P,VPj)

’
Se ((R[Pl/\Pl',Pz\/Pﬂ)e[Pl/\P{’P2VP§]+€[P1AP1’1P2VP2/]) ,

concluding the proof. O

B.7 Proof of Proposition 6

Proposition 6. Let wenc = (Tenc, Tdec) denote the protocol securing communi-
cation using a symmetric encryption scheme. Then, for the resources in Figure 1,
there exist (efficient) simulators o1, o2, and og such that

[EncKey, AuthCh] "= ﬂ (oSecCh)Fr-F2le
(Pl,PQ,C,O')GQ

for
- leaked leaked leaked
2= {(true, EEnckey V EauthKey: ECPA, o1), (EEnCKey, false,0,03),
leaked
(EAuthKeya falsev 07 0-3) }7

where ecpp denotes a simple reduction from distinguishing the secure and authen-
ticated channel (without key leakage) to the IND-CPA game.
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Proof (Sketch). Let o1 be the usual simulator that creates fake ciphertexts

by encrypting 01! instead of m, when queried for the leakage of the channel.
leaked leaked

By definition, we have untilgise | giaies (01SecCh) € (o1 SecCh)ltrue:Eencke,V Enuthice, |,

ncKey uthKey

Thus, if the encryption scheme is IND-CPA secure, then it is easy to see that

leaked leaked ECPA

untilgleaked vEleked (7TENC [EncKey, AuthCh]) S ((UlseCCh)[gE"CKeY\/SA“‘hKeV>

EncKey

which proves the construction inside the first interval. For the second interval,
consider the simulator o5 that encrypts the real messages. Using correctness of
the encryption scheme, it is easy to see that

fromgéeak;d (WENC [EncKey, AuthCh] ) = fromgleaked (O'QSeCCh)

EncKey

and analogous for the third interval using the same simulator o3 = o5. a

B.8 Proof of Theorem 15

Theorem 15. Let R, S, and T be arbitrary specifications, let w and ' be
arbitrary protocols, and let 2 and 2 be arbitrary interval-wise guarantees. Then,
we have

R () (@S)Perhe A s () (o/T)F0E
(Py1,Ps,e,0)EQR (P|,P},e' o e
— R 7o (0_0_17~)[P1/\P1’,P2vP2']:€7
(Pl,PQ,E,O')EQ
(PP, ,o’")es
where € = (ex)(p,AP! PyvPy + (€5) (P AP] Pyvpy)- Furthermore, we have
R () (@)l = [R,T] = () (afs 7))

(Py,Ps,6,0)EN (Py,Ps,e,0)ERN

Proof. We first prove sequential composition. In the following, let (Py, Ps,€,0) €
2 and (P{, Pj,€,0’) € {2. From the first part of the assumption, Theorem 14,
and composition order invariance we obtain

'R - W/((US)[PI’PQ] ) (71- U-S)[PI’P2]¢€-"/ C (o-ﬂ./S)[Pth]:e,r/
Moreover, using the second part of the assumption and Theorem 14 yields
on'S C U((U/T)[P{,Pz'];g’) c (UU/T)[P{’Pé]:E;,

Combining the two statements, and using the monotonicity of relaxations, we get

x'rR C ((O_O_/T)[P{,PL;]:EQ,)[Pl,PQJ enl (o T)[131/\131’,132va;]:€7
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where in the last step we used Theorem 13, directly implying the sequential
composition property.
Now consider parallel composition. We directly obtain

©[R,T] = [7*R,T]

[
C [(o8)P Pl T]
C [os, 7]

= (o8,

where in the first and the last step we used composition order invariance, in the
second step the assumption, and in the third step Theorem 14. a

C Detalils of Section 5

C.1 ElGamal Commitments

In this section, we provide some additional details to the ElGamal-commitment
example. First, a formal definition of the corresponding converter implementing
the protocol is presented in Figure 10. Second, a formal definition of the two
simulators involved in the construction statements of is depicted in Figure 11.
The left simulator ofc ., is used to formalize security against a potentially
dishonest Alice (initiator), and the right of,c ., is used to formalize security
against a potentially dishonest Bob (responder), respectively.

C.2 Coin-Tossing

In this section, we provide some additional details on the coin-tossing example.
First, in Figure 12 we prove the formal definition of the two converters of Blum’s
protocol for constructing a single-bit coin-toss resource. Note that in the protocol
Alice acts as the initiator, and Bob as the responder, respectively. The pseudo-code
description is presented in Figure 12.

Second, a formal description of the two simulators involved in the construction
statements of the coin-toss resource is depicted in Figurc 13. The left o1 is
used to formalize security against a potentially dishonest Alice (initiator), and
the right og is used to formalize security against a potentially dishonest Bob
(responder), respectively.
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" B
Converter 8¢ com Converter g g o

Initialization Initialization
a,b,v+ L c,A,B,v+ L
Emulating Interface A of Comfér_’B Emulating Interface B of Comf;—”3
Input: (commit,m) Input: isCommitted
require only called once if ¢ = L then
a,b « Zg, call (c, A, B) + (receive)
V4= m at interface B of Ch'i_’B

call (send, (g%, gb’ m - gab)

at interface A of Chi™®

£ <i geom mitted

return ¢ # L

Input: read
if ¢ = 1 then
call (¢, A, B) + (receive)
Input: (open,m) . at tilm;erfa.ce B of Ch}™®
if v = L then
call (a,b) < (receive)

return ok

require £ and only called once
if m = v then

. A—B
call (send, (a,b)) at int. A of Ch§™® . at interface B of Chy .
£ i gopened if (a,b) # LAA =g" AB =g’ then
—a
return ok veeng
return v

Fig. 10: A formal description of the ElGamal-commitment converters.

B A
Converter og,c .om Converter ogic_com

Initialization Initialization
u, v, w « G A, B,V «+ L
T < L

Emulating Interface A of Ch}™?

Emulating Interface B of Ch‘iﬁ\B

Input: (send, x)

Input: receive require only called once
call succ < (isCommitted) if z € G® then
at interface B of Comg ™2 (A,B,V) + =
if succ then call (commitRaw, )
return (u, v, w) at interface A of Comg; *®
else return ok
return L

Emulating Interface A of Ch5™®?

. A—B
Emulating Interface B of Ch;, Input: (send, z)
Input: receive require only called once
return L ifz:(a,b)GZ‘m/\A:g“/\B:gb
then

call (open, V - g~ 2%)
at interface A of Comg; *®
return ok

Fig.11: A formal description of the simulators from the ElGamal-commitment
construction.
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A
Converter ¢

B
Converter ¢

Initialization

Initialization

XY « L

XY « L

A.B

Emulating Interface A of CT{0 1}

AB

Emulating Interface B of CT{O 1}

Input: initiate
require only called once
X « {0,1}
call commit at int. A of Com*™
return ok

B

Input: read
require X # |
if Y = 1 then
call Y < read at int. A of Ch®™*
if Y # L then return X @Y
else return L

Input: release
require Y # 1 and only called once
call (open, X) at int. A of Com*™®
return ok

Input: isInitiated
call b + isCommitted at int. B of Com*™
return b

B

Input: respond
require isInitiated and only called once
Y « {0,1}
call (send, Y) at int. B of Ch®™4
return ok

Input: read
require Y # L
if X = 1 then
call X < read at int. B of Com*™?
if X # 1 then
return X Y
else
return L

Fig.12: A formal description of the coin-tossing converters.

; A
Simulator o¢

H B
Simulator o¢

. A—B
Emulating Interface A of Com{o’l}’f

Input: (commit,z) € {0,1}
require _|£committed
X +—z
call init at int. A of CT*B
return ok

Input: (commitRaw,c) € {0,1}*
require —gommitted
call init at int. A of CT*®
call X < (getLeakage, c) at int. B of
cTie?

{0,1},f
return ok

Input: (open,z) € {0,1}
require £°™Mtted only called once, and
=X
call release at int. A of CT*B
return ok

Emulating Interface A of Ch®~*

Input: read
require X # L VC # L
call Z < read at int. B of CTA{’(;a 1 f
if Z # 1 then return Z & X
else return L

Initialization
Z,Y «+— L

Emulating Interface B of Com'}g’g}

Input: isCommitted
call b + isInitiated at int. B of CT*B
return b

Input: read
require Y # L
if Z = 1 then
call Z < read at int. B of CT*?
if Z # 1 then
return Z QY
else
return L

Emulating Interface B of Ch®™*

Input: (send,Y) € {0,1}
require isInitiated and only called once

call respond at int. B of CT'}’SJ}

return ok

Fig.13: A formal description of the respective coin-tossing simulators.
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