Graceful Degradation in Multi-Party
Computation
(Extended Abstract)*

Martin Hirt!, Christoph Lucas', Ueli Maurer', and Dominik Raub?

! Department of Computer Science, ETH Zurich, Switzerland
{hirt, clucas, maurer}@inf.ethz.ch
2 Department of Computer Science, University of Arhus, Denmark
raub@cs.au.dk

Abstract. The goal of Multi-Party Computation (MPC) is to perform
an arbitrary computation in a distributed, private, and fault-tolerant
way. For this purpose, a fixed set of n parties runs a protocol that tol-
erates an adversary corrupting a subset of the participating parties, and
still preserves certain security guarantees.

Most MPC protocols provide security guarantees in an all-or-nothing
fashion. In this paper, we provide the first treatment of MPC with grace-
ful degradation of both security and corruptions. First of all, our proto-
cols provide graceful degradation of security, i.e., different security guar-
antees depending on the actual number of corrupted parties: the more
corruptions, the weaker the security guarantee. We consider all security
properties generally discussed in the literature (secrecy, correctness, ro-
bustness, fairness, and agreement on abort). Furthermore, the protocols
provide graceful degradation with respect to the corruption type, by dis-
tinguishing fully honest parties, passively corrupted parties, and actively
corrupted parties. Security can be maintained against more passive cor-
ruptions than is possible for active corruptions.

We focus on perfect security, and prove exact bounds for which MPC
with graceful degradation of security and corruptions is possible for both
threshold and general adversaries. Furthermore, we provide protocols
that meet these bounds. This strictly generalizes known results on hybrid
security and mixed adversaries.

Keywords: Multi-party computation, graceful degradation, hybrid se-
curity, mixed adversaries.

1 Introduction

1.1 Secure Multi-Party Computation

Multi-Party Computation (MPC) allows a set of n parties to securely perform
an arbitrary computation in a distributed manner, where security means that

* The full version of this paper is available at the Cryptology ePrint Archive:
http://eprint.iacr.org/2011/094. This work was partially supported by the Zurich
Information Security Center.

S. Fehr (Ed.): ICITS 2011, LNCS 6673, pp. 163-180, 2011.
© Springer-Verlag Berlin Heidelberg 2011

164 Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub

secrecy of the inputs and correctness of the output are maintained even when
some of the parties are dishonest. The dishonesty of parties is typically modeled
with a central adversary who corrupts parties. The adversary can be passive,
i.e., she can read the internal state of the corrupted parties, or active, i.e., she
can make the corrupted parties deviate arbitrarily from the protocol.

MPC was originally proposed by Yao [Yao82]. The first general solution
was provided in [GMW87], where, based on computational intractability as-
sumptions, security against a passive adversary was achieved for ¢ < n cor-
ruptions, and security against an active adversary was achieved for ¢ < 3. In
[BGW88,CCD88]|, information-theoretic security was achieved at the price of
lower corruption thresholds, namely ¢t < 3 for passive and ¢ < 7 for active
adversaries. The latter bound can be improved to ¢ < 5 if both broadcast chan-
nels are assumed and a small error probability is tolerated [RB89,Bea89]. These
results were generalized to the non-threshold setting, where the corruption capa-
bility of the adversary is not specified by a threshold ¢, but rather by a so-called
adversary structure Z, a monotone collection of subsets of the player set, where
the adversary can corrupt the players in one of these subsets [HM97].

All mentioned protocols achieve full security, i.e., secrecy, correctness, and
robustness. Secrecy means that the adversary learns nothing about the honest
parties’ inputs and outputs (except, of course, for what she can derive from
the corrupted parties’ inputs and outputs). Correctness means that all parties
either output the right value or no value at all. Robustness means that the ad-
versary cannot prevent the honest parties from learning their respective outputs.
This last requirement turns out to be very strong. Therefore, relaxations of full
security have been proposed, where robustness is replaced by weaker output
guarantees: Fairness means that the adversary can possibly prevent the honest
parties from learning their outputs, but then also the corrupted parties do not
learn their outputs. Agreement on abort means that the adversary can possibly
prevent honest parties from learning their output, even while corrupted par-
ties learn their outputs, but then the honest parties at least reach agreement
on this fact (and typically make no output). Note that for example [GMWS87]
achieves secrecy, correctness, and agreement on abort (but neither robustness
nor fairness) for up to ¢t < n active corruptions.

1.2 Graceful Degradation

Most MPC protocols in the literature do not degrade very gracefully. They pro-
vide a very high level of security up to some threshold ¢, but no security at all
beyond this threshold. There are no intermediate levels of security.! Further-
more, a party is considered either fully honest or fully corrupted. There are no
intermediate levels of corruptions.

Note that many papers in the literature consider several corruption types, or
even several levels of security, but in separate protocols. For example, [BGWS8§|

proposes a protocol for passive security with ¢ < %, and another protocol for

! The same observation holds for known protocols for general adversaries.

Graceful Degradation in Multi-Party Computation (Extended Abstract) 165

active security with ¢ < %. There is no graceful degradation: If in the active
protocol, some passive adversary corrupts [% | parties, the protocol is insecure.

Graceful degradation was first considered by Chaum [Cha89]: He proposed
one protocol with graceful degradation of security, namely from information-
theoretic security (few corruptions) over computational security (more corrup-
tions) to no security (many corruptions), and another, independent protocol with
graceful degradation of corruptions, namely by considering fully honest, passively
corrupted, and actively corrupted parties in the same protocol execution. The
former protocol (graceful degradation of security, often called hybrid security)
was recently generalized in [FHHWO03,FHW04,IKLP06,Kat07,LRM10]. The lat-
ter protocol (graceful degradation of corruptions, often called mized security)
was generalized and extended in [DDWY93,FHM98,FHM99,BFH 08, HMZ08].

1.3 Owur Focus

In this work, we consider simultaneously graceful degradation of security (i.e.,
hybrid security) and graceful degradation of corruptions (i.e., mixed adversaries),
both in the threshold and in the general adversary setting. In the threshold
setting, we consider protocols with four thresholds ¢¢ (for correctness), t* (for
secrecy), t" (for robustness), and ¢/ (for fairness).? We assume that ¢* < t° and
t" < t¢, since secrecy and robustness are not well defined in a setting without
correctness. Furthermore, we assume that tf < 5 since in a setting without
secrecy the adversary inherently has an unfair advantage over honest parties.

Furthermore, we also consider graceful degradation with respect to the cor-
ruption type: We consider, at the same time, honest parties, passively corrupted
parties, and actively corrupted parties (so-called mized adversaries). Such an
adversary is characterized by two thresholds ¢, and t,, where up to ¢, parties
can be passively corrupted, and up to t, of these parties can even be corrupted
actively. Note that ¢, denotes the upper bound on the total number of corrup-
tions (active as well as purely passive), and ¢, denotes the upper bound on the
number of actively corrupted parties (hence, t, <t,).

In the non-threshold setting, security is characterized by four adversary struc-
tures Z¢, 2%, 2", Z7, where correctness, secrecy, robustness, and fairness are
guaranteed as long as the set of corrupted players is contained in the correspond-
ing adversary structure.? As argued above, we assume that Z° C Z¢, Z" C Z¢
and Z7 C Z*. In order to model both passive and active corruptions, each ad-
versary structure consists of tuples (D,) of subsets of the player set, where £
is the set of passively (eavesdropping), and D C £ is the set of actively (disrup-
tion) corrupted parties. A protocol with adversary structure Z provides security
guarantees for every adversary actively corrupting the parties in D and passively
corrupting the parties in &, for some (D, &) € Z.

2 If the number of corruptions is below multiple thresholds, all corresponding secu-
rity properties are achieved. In particular, full security is achieved if the number of
corruptions is below all thresholds.

3 As in the threshold case, if the set of corrupted parties is contained in multiple
adversary structures, all corresponding security properties are achieved.

166 Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub

Note that the notion of correctness for a security level without secrecy differs
from the usual interpretation: The adversary is rushing and may know the entire
state of the protocol execution. Hence, input-independence cannot be achieved.
Furthermore, for the same reason, we can have probabilistic computations only
with adversarially chosen randomness.

1.4 Contributions

We provide the first MPC protocol with graceful degradation in multiple dimen-
sions: We consider all security properties generally discussed in the literature (se-
crecy, correctness, robustness, fairness, and agreement on abort), and the most
prominent corruption types (active, passive). We prove a tight bound on the
feasibility of perfectly-secure MPC, both in the threshold and the non-threshold
setting, and provide efficient perfectly-secure general MPC protocols matching
these bounds.* Our main results (Theorems 1 and 2) are a strict generalization
of the previous results for perfect MPC, which appear as special cases in our
unified treatment. For the sake of simplicity, we do not include fail corruption
[BFHT08]. Note that fairness is not discussed in the protocol descriptions, but
in Section 4.

Previous results for perfectly secure MPC considered graceful degradation
only of corruption levels, i.e., the known protocols always provide full security.
Usually, the intuition behind the different corruption types is that passively
corrupted parties only aim to break secrecy, whereas actively corrupted parties
aim to break correctness (and/or robustness). However, this analogy does not
readily extend to mixed adversaries that simultaneously perform passive and
active corruptions. Our model separates the different security properties, and
therefore allows to make precise statements formalizing the above intuition. This
indicates that our model is both natural and appropriate.

As a simple example consider voting. A solution based on a traditional per-
fectly secure MPC protocol, e.g. [BGW88], achieves secrecy and correctness for
up to t < 3 corrupted parties, but provides no guarantees if ¢ > 7. However, in
voting it is generally much more important that the final tally is correct than

to protect the secrecy of votes. Our protocol allows to reduce secrecy to t = ¢

corrupted parties, while guaranteeing correctness for ¢ < %T” actively corrupted

parties (and additionally arbitrarily many passively corrupted parties). This pro-

tocol is robust for up to t = g corruptions. It is also possible to trade correctness

for robustness: By reducing the Corregctness guarantee to t < 5 corruptions, ro-
n

bustness is guaranteed for up to t = < corruptions.

4 The protocols are efficient in the input length, i.e. the threshold protocol is efficient
in the number of parties and the size of the circuit to be computed, whereas the
protocol for general adversaries is efficient in the size of the adversary structure and
the size of the circuit.

Graceful Degradation in Multi-Party Computation (Extended Abstract) 167

1.5 Model

We consider n parties 1,...,n, connected by pairwise synchronous secure chan-
nels, who want to compute some probabilistic function over a finite field F, rep-
resented as a circuit with input, addition, multiplication, random, and output
gates. This function can be reactive, where parties can provide further inputs
after having received some intermediate outputs. In the main body of this paper,
we assume that authenticated broadcast channels are given. The model without
broadcast channels is treated in the full version of this paper.

There is a central adversary with unlimited computing power who corrupts
some parties passively (and reads their internal state) or even actively (and
makes them misbehave arbitrarily). We denote the actual sets of actively (pas-
sively) corrupted parties by D* (£*), where D* C £*. Uncorrupted parties are
called honest, non-active parties are called correct. The security of our protocols
is perfect, i.e., information-theoretic with no error probability. The level of secu-
rity (secrecy, correctness, fairness, robustness, agreement on abort) depends on
(D*,&%).

For ease of notation, we assume that if a party does not receive an expected
message (or receives an invalid message), a default message is used instead.

1.6 Outline of the Paper

Our paper is organized as follows: As a main technical contribution, we generalize
known protocols for threshold and general adversaries in Sections 2 and 3. In
Section 4, we state optimal bounds for MPC, together with proofs of sufficiency.
Tightness of the bounds is proven in Section 5.

2 A Parametrized Protocol for Threshold Adversaries

In this section, we generalize the perfectly secure MPC protocol of
[BGWSS] by introducing two parameters. On an abstract level, our modifica-
tions can be described as follows: First, we define the state that is held in the
protocol in terms of a parameter that influences the secrecy. In case of [BGWS8S],
this is the degree d of the sharing polynomial (see also [FHM98]). Second, given
the parameter d for secrecy, we express the reconstruct protocol in terms of an
additional parameter determining the amount of error correction taking place.
Traditional protocols correct as many errors as possible. By using a parameter,
our protocol may stay below the theoretical limit, thereby providing extended
error detection. In case of [BGW88], this parameter is the number e of corrected
errors during reconstruction. To our knowledge, such a second parameter has
not been considered before. The two parameters must fulfill d + 2e < n. Note
that by choosing d + 2e # n — 1, it is possible to reduce robustness for extended
correctness. In [BGWS8], both parameters are set to d = e = ¢, the maximum
number of actively corrupted parties.

In the following, we present the parametrized protocols and analyze them
with respect to correctness, secrecy, and robustness. Note that fairness is dis-
cussed in Section 4.

168 Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub

2.1 The Underlying Verifiable Secret Sharing

The state of the protocol is maintained with a Shamir sharing [Sha79] of each
value. We assume that each party ¢ is assigned a unique and publicly known
evaluation point o; € F\ {0}. This implies that the field F must have more than
n elements.

Definition 1 (d-Sharing). A value s is d-shared when there is a share polyno-
mial §(z) of degree d with 3(0) = s, and every party i holds a share s; = §(«;).
We denote a d-sharing of s with [s], and the share s; with [s];. A sharing degree
d is t-permissive if the shares of all but t parties uniquely define the secret, i.e.,
n—t>d.

Lemma 1. Let d < n be the sharing degree. A d-sharing is secret if |E*| < d,
and uniquely defines a value if d is |D*|-permissive.

Proof. Tt follows directly from the properties of a polynomial of degree d that
secrecy is guaranteed if the number |£*| of (actively or passively) corrupted
parties is at most d. Furthermore, n — |D*| > d implies that there are at least
d + 1 correct parties whose shares uniquely define a share polynomial. a

The share protocol takes as input a secret s from a dealer, and outputs a d-
sharing [s] (see Figure 1). Due to lack of space, the proof of the following lemma
can be found in the full version.

SHARE: Given input s from the dealer, compute a d-sharing [s] of this value.

1. The dealer chooses a random (2-dimensional) polynomial g(z,y) with g(0,0) = s,
of degree d in both variables, and sends to party ¢ (for « = 1,...,n) the (1-
dimensional) polynomials k;(y) = g(as,y) and hs(z) = g(x, o).

2. For each pair of parties (i, 7), party ¢ sends h;(a;) to party 7, and party j checks
whether h;(a;) = kj(a;). If this check fails, it broadcasts a complaint, and the
dealer has to broadcast the correct value.

3. If some party i observes an inconsistency between the polynomials received in
Step 1 and the broadcasted value in Step 2, it accuses the dealer. The dealer has to
answer the accusation by broadcasting both k;(y) and h;(x). Now, if some other
party j observes an inconsistency between the polynomial received in Step 1 and
these broadcasted polynomials, it also accuses the dealer. This step is repeated
until no additional party accuses the dealer.

4. If the dealer does not answer some complaint or accusation, or if the broadcasted
values contradict, the parties output a default d-sharing. Otherwise, each party ¢
outputs s; := k;(0), and the dealer outputs 4(z) := g(x,0).

Fig. 1. The Share Protocol.

5 That means, in general we discard the second dimension of g(z,y). Yet, in a special
context, we will subsequently make use of it.

Graceful Degradation in Multi-Party Computation (Extended Abstract) 169

Lemma 2. Let d < n be the sharing degree. On input s from the dealer, SHARE
correctly, secretly, and robustly computes a d-sharing. If d is |D*|-permissive,
and if the dealer is correct, the sharing uniquely defines the secret s.

The public reconstruction of a d-shared value s uses techniques from coding
theory, which allow a more intuitive understanding of the trade-off between
correctness and robustness. It follows from coding theory that a d-sharing is
equivalent to a code based on the evaluation of a polynomial of degree d. Such
a code has minimal distance n — d. Hence, the decoding algorithm can detect
up to n — d — 1 errors and abort (for correctness), or correct up to "’T‘H
errors (for robustness). In our protocol, we trade correctness for robustness by
introducing the correction parameter e < ”T_d: Our decoding algorithm provides
error correction for up to e errors, and error detection for up to (n —d) —e — 1
errors. Note that this trade-off is optimal: If the distance to the correct codeword
is greater than (n — d) — e — 1, the distance to the next codeword is at most e,
and the decoding algorithm would decode to the wrong codeword.

The public reconstruction protocol (Figure 2) proceeds as follows: First, each
party broadcasts its share s;. Then, each party locally “decodes” the broadcasted
shares to the closest codeword, and aborts if the Hamming distance between
the shares and the decoded codeword is larger than e. Note that during public
reconstruction, there is no secrecy requirement.

PuBLIC RECONSTRUCTION: Given a d-sharing [s] of some value s, reconstruct s to
all parties.

1. Each party ¢ broadcasts its share s;. Let s = (s1,...,5,) denote the vector of
broadcasted shares.

2. Each party identifies the closest codeword s. (e.g. using the Berlekamp-Welch
algorithm). If the Hamming distance between s. and s is larger than e, the
protocol is aborted. Otherwise, each party interpolates the entries in s, with a
polynomial 3.(z) of degree d, and outputs 3.(0).°

Fig. 2. The Public Reconstruction Protocol.

Lemma 3. Let d be the sharing degree, and e be the correction parameter, where
d + 2e < n. Given a d-sharing [s] of some value s, PUBLIC RECONSTRUCTION
is correct if |D*| < (n —d) — e, is robust if |D*| < e, and always guarantees
agreement on abort.

Proof. Only actively corrupted parties broadcast incorrect shares. Hence, the
Hamming distance between the broadcasted shares and the correct codeword is
at most |D*|.

6 That means, in general we discard the vector of corrected shares s.. Yet, in a special
context, we will subsequently make use of it.

170 Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub

Correctness: The minimal distance between two codewords is (n — d), and
the decoding algorithm corrects up to e errors. Hence, if |D*| 4+ e < (n — d), the
decoding algorithm never decodes to the incorrect codeword.

Robustness: If |D*| < e, the Hamming distance between the shares and the
correct codeword is at most e and the decoding cannot be aborted.

Agreement on abort: The abort decision is only based on broadcasted values.
Hence, either all correct parties abort, or all correct parties continue. a

During PuBLIC RECONSTRUCTION, all parties learn the value under considera-
tion. PRIVATE RECONSTRUCTION, where a value s is disclosed only to a single
party k, can be reduced to PUBLIC RECONSTRUCTION using a simple blind-
ing technique ([CDGS87]): Party k first shares a uniform random value, which
is added to s before PUBLIC RECONSTRUCTION is invoked. Hence, PRIVATE
RECONSTRUCTION provides the same security guarantees as PUBLIC RECON-
STRUCTION, and additionally provides secrecy of the reconstructed value. Note
that the trivial solution, where each party sends its share to party k, does not
achieve agreement on abort.

2.2 Addition, Multiplication, and Random Values

Linear functions (and in particular additions) can be computed locally, since
d-sharings are linear: Given sharings [a] and [b], and a constant ¢, one can easily
compute the sharings [a] +[b], ¢[a], and [a] +¢. Computing a shared random value
can be achieved by letting each party ¢ share a random value r;, and computing
[r] =[r] + ...+ [ra].

The multiplication protocol is more involved. The product ¢ of two shared
values a and b is computed as follows [GRR98]: Each party multiplies its shares
a; and b;, obtaining v; = a;b;. This results in a sharing of ¢ with a polynomial
0(x) of degree 2d. We reduce the degree by having each party d-share its value v;
(resulting in [v;]), and employing Lagrange interpolation to distributedly com-
pute 9(0). This results in a d-sharing of the product c.

This protocol is secure only against passive adversaries. An active adversary
could share a wrong value v} # v;. Therefore, each party has to prove that it
shared the correct value v; = a;b;. This proof requires that a; and b; are d-shared,
which we achieve by upgrading the d-sharings of a and b, resulting in [a;] and
[b;] for all i.

Given [a4], [b], and [v;], it remains to show that a;b; = v;, which is equivalent
to z = 0 for [2]?? := [a;][bi] — [vi], where [2]?? is a 2d-sharing. Party i knows
the sharing polynomial g(x) corresponding to [2]??. However, party i cannot
simply broadcast g(x), since this would violate secrecy (the adversary could
obtain information about other shares). Therefore, we blind [2]?¢ by adding a
uniformly random 2d-sharing of 0.

Finally, all parties (locally) check whether z = 0, and whether party i broad-
casted the correct polynomial g(z), i.e. for party j whether g(¢;) = [z]?d. Two
polynomials of degree 2d are equal if they coincide in 2d+ 1 points. So, if party ¢
broadcasts an incorrect g(z), and if there are at least 2d + 1 correct parties, at

Graceful Degradation in Multi-Party Computation (Extended Abstract) 171

least one correct party detects the cheating attempt and raises an accusation. To
prove the accusation, the shares of the corresponding party are reconstructed.

The full description of the multiplication protocol can be found in the full
version.

2.3 The Security of the Parametrized Protocol

Considering the security of the subprotocols described above, we can derive the
security of the parametrized protocol, denoted by 7% (proof omitted):

Lemma 4. Let d be the sharing degree, and e be the correction parameter, where
d + 2e < n. Protocol ©%¢ guarantees correctness if |D*| < (n —d) — e and
|D*| < n — 2d, secrecy if |E*| < d and correctness is guaranteed, robustness if
|D*| < e, and agreement on abort always.

3 A Parametrized Protocol for General Adversaries

For general adversaries, we proceed along the lines of the threshold case: We
generalize the protocol of [Mau02] and introduce the sharing specification S =
(S1,...,Sk) (corresponding to the sharing degree d), and the correction structure
C ={Ci,...,C} (corresponding to the correction parameter e), both collections
of subsets of P.

3.1 The Underlying Verifiable Secret Sharing

The state of the protocol is maintained with a k-out-of-k sharing, where each
party holds several summands.

Definition 2 (S-Sharing). A value s is S-shared for sharing specification S =
(S1,...,Sk) if there are values s1,...,sk, such that sy + ...+ s, = s and, for
all i, every (correct) party j € S; holds the summand s;. A sharing specification
S is D-permissive, if each summand is held by at least one party outside D,
i.e. YVi:S;\D#0.

Lemma 5. Let S be the sharing specification. An S-sharing is secret if 35; €
S:8,NE =0, and uniquely defines a value if S is D*-permissive.

Proof. Secrecy follows from the fact that £* lacks at least one summand s;.
Furthermore, given that S is D*-permissive, each summand s; is held by at least
one correct party. Hence, the secret s is uniquely defined by s = s1+...+s,. O

The share protocol takes as input a secret s from a dealer, and outputs an S-
sharing of the secret s (see Figure 3). Due to lack of space, the proof of the
following lemma can be found in the full version.

Lemma 6. Let S be the sharing specification. On input s from the dealer,
SHAREYY correctly, secretly and robustly computes an S-sharing. If S is D*-
permissive, and if the dealer is correct, the sharing uniquely defines the secret
s.

172 Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub

SHARE®%: Given input s from the dealer, compute an S-sharing of this value.

1. Let k = |S|. The dealer chooses uniformly random summands s1, ..., Sx—1 and
computes sy = § — Zf;ll si. Then, the dealer sends s; to every party j € S;.

2. For all S; € S: Every party j € S; sends s; to every other party in S;. Then,
every party in S; broadcasts a complaint bit, indicating whether it observed an
inconsistency.

3. The dealer broadcasts each summand s; for which inconsistencies were reported,
and the players in S; accept this summand. If the dealer does not broadcast a
summand s;, the parties use s; = 0.

4. Each party j outputs its share {s; | j € Si}.

Fig. 3. The Share Protocol for General Adversaries.

For the public reconstruction” of a shared value, we modify the reconstruction
protocol of [Mau02]. In our protocol, we trade correctness for robustness by
introducing a correction structure C. First, each summand s; is broadcasted by
all parties in S;. Then, if the inconsistencies can be explained with a faulty set
C € C, the values from parties in C are ignored (corrected), and reconstruction
proceeds. Otherwise, the protocol is aborted.

Note that, whenever two sets of possibly actively corrupted parties cover a
set S; € S, i.e. S; C Dy UDsy, and the parties in Dy contradict the parties in
Dy, then it is impossible to decide which is the correct value. This observation
implies an upper bound on C, namely VS € §,C1,Cy € C : S € C1UCs. However,
instead of always correcting as many errors as possible, the protocol allows to
select a structure C that remains below this upper bound (i.e. contains smaller
sets C'). Now, when correcting errors in a set C' € C, we can detect errors in sets
D where VS; € §,C € C:S; € DUC. Hence, this approach provides a tradeoff
between reduced robustness and extended correctness.

PuBLIC RECONSTRUCTION®A: Given an S-sharing of some value s, reconstruct s to
all parties.

1. For each summand s;:

(a) Each party j € S; broadcasts s;. For j € S, let sl(-j) denote the value (for s;)
broadcasted by party j.

(b) Each party (locally) reconstructs the summand s;: If there is a value s; such
that there exists C' € C with slw =s; for all j € S;\ C, use s;. Otherwise
abort.

2. Each party outputs the secret s = s1 + ...+ sk.

Fig. 4. The Public Reconstruction Protocol for General Adversaries.

" The reduction of private to public reconstruction can be done along the lines of the
threshold case.

Graceful Degradation in Multi-Party Computation (Extended Abstract) 173

Lemma 7. Let S be the sharing specification, and C be the correction structure,
where VS € §,C1,Cy € C: S € C1 UCs. Given an S-sharing of some value s,
PUBLIC RECONSTRUCTION®? is correct if V€ € C,S € S : S\C & D*, is robust
if D* € C, and always guarantees agreement on abort.

Proof. Correctness: The condition VC € C,S € § : S\ C € D* states that for
every summand s; and every set C' € C, there is at least one correct party whose
summand is not ignored. Hence, if a value s; is chosen, it must be the correct
one.

Robustness: When reconstructing the summand s;, all but the actively cor-
rupted parties in D* broadcast the same summand s;. If D* € C, these incon-
sistencies can be explained with a set in C. Hence, the corresponding set can be
ignored and reconstruction terminates without abort.

Agreement on abort: The abort decision is based only on broadcasted values.
Hence, either all correct parties abort, or all correct parties continue. a

3.2 Addition, Multiplication, and Random Values

Linear functions (and in particular additions) can be computed locally, since
S-sharings are linear. In particular, given sharings of a and b, and a constant c,
one can easily compute the sharings of a + b, ca, and a 4 ¢. Computing a shared
random value can be achieved by letting each party 7 share a random value 7;,
and computing a sharing of r =7y + ...+ ry,.

For the multiplication of two values a and b, we use the protocol from
[Mau02], based on our modified share and reconstruct protocols. The multi-
plication protocol exploits the fact that ab = Zle Z§=1 a;b;j: For each a;b;,
first, all parties who know a; and b; compute a;b; and share it. Then, all parties
choose a (correct) sharing of a;b;. In the end, each party locally computes the
linear function described above. In order to choose a correct sharing of a;b;, the
protocol checks whether all parties that computed a;b; shared the same value.
If this holds, and if at least one correct party shared a;b;, all sharings contain
the correct value, and an arbitrary one can be chosen. Otherwise, at least one
party is actively corrupted, and the summands a; and b; can be reconstructed
without violating secrecy.

The full description of the multiplication protocol can be found in the full
version.

3.3 The Security of the Generalized Protocol from [Mau02]

Considering the security of the subprotocols described above, we can derive the
security of the parametrized protocol, denoted by 7€ (proof omitted):

Lemma 8. Let S be the sharing specification, and C be the correction structure,
whereVS € S,C1,Co € C: S € C1UCy. The protocol € guarantees correctness
if ¥5;,8,€8:8N0n8,€D* and VC e€C,Se€S8:5\C ¢ D*, secrecy if
38, € S:S;NE* =0 and correctness is guaranteed, robustness if D* € C, and
agreement on abort always.

174 Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub

4 The Main Results

The following theorems state the optimal bounds for perfectly secure MPC with
graceful degradation of both security (allowing for hybrid security) and cor-
ruptions (allowing for mixed adversaries) for threshold as well as for general
adversaries, given broadcast.® Furthermore, we show that the bounds are suffi-
cient for MPC by providing parameters for the generalized protocols introduced
in Sections 2 and 3, respectively. In the following section, we prove that the
bounds are also necessary.

4.1 Threshold Adversaries

We consider a mixed adversary, which is characterized by a pair of thresholds
(ta,tp): He may corrupt up to ¢, parties passively, and up to t, of these par-
ties even actively. The level of security depends on the number (|D*|,|E*|) of
actually corrupted parties; the fewer parties are corrupted, the more security is
guaranteed. We consider four security properties, namely correctness, secrecy,
robustness, and fairness. Depending on the actual number of corrupted par-
ties, different security properties are achieved. This is modeled with four pairs of
thresholds, one for each security requirement, specifying the upper bound on the
number of corruptions that the adversary may perform, such that the security
requirement is still guaranteed. More specifically, we consider the four pairs of
thresholds (£5,t), (t5,t3), (t7,t7), (t1,tf) and we assume that (t7,17) < (£, 1¢)

a’”p a’”p a’”p a’”p a’”p a’”p
and (t], tg) < (t5,t5) < (t5,15),° as secrecy and robustness are not well defined

without correctness, and as fairness cannot be achieved without secrecy. Then,

correctness with agreement on abort is guaranteed for (|D*|,|€*|) < (t5,t5),

secrecy is guaranteed for (|D*[,|€*|) < (t5,t5), robustness is guaranteed for
(ID*[, |E€¥]) < (t4,t},), and fairness is guaranteed for (|D*[, [£]) < (t{:,tg). Triv-

ially, if several of these conditions are satisfied, all corresponding security prop-
erties are guaranteed. In particular, full security is guaranteed if the conditions
for all four security properties are fulfilled.

Theorem 1. In the secure channels model with broadcast and threshold adver-
saries, perfectly secure MPC among n parties with thresholds (tg,ty), (t5,t;),
(tn.tr), and (t],t]), where (¢}, t0) < (t5,t5) and (t],t]) < (t5,t5) < (t5,t5), is
possible if

(to +tp+t, <n A tg+2t5<n) VvV t5=0.

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

The sufficiency of the bound in Theorem 1 follows basically from Lemma 4 (with
d =t} and e := max(ty, t1)). Due to lack of space the proof can be found in the

a’”a

full version. The necessity of the bound is proven in Section 5.

8 The model without broadcast is treated in the full version of this paper.

9 We write (tasty) < (tg,ty) as shorthand for t5 < tg and t; < tj.

Graceful Degradation in Multi-Party Computation (Extended Abstract) 175

4.2 General Adversaries

The above characterization for threshold adversaries can be extended to general
adversaries by providing one adversary structure consisting of tuples (D, &) of
subsets of P for each security requirement, denoted by Z¢, Z°, Z" and Z/, re-
spectively. Again, we have the assumption that Z” C Z¢ and Z/ C 25 C Z°¢, as
secrecy and robustness are not well defined without correctness, and as fairness
cannot be achieved without secrecy. Then, correctness with agreement on abort is
guaranteed for (D*,£*) € Z¢, secrecy is guaranteed for (D*,£*) € Z*, robustness
is guaranteed for (D*,£*) € Z", and fairness is guaranteed for (D*,&*) € Z7.
Trivially, if several of these conditions are satisfied, all corresponding security
properties are guaranteed. In particular, full security is guaranteed if the condi-
tions for all four security properties are fulfilled.

Theorem 2. In the secure channels model with broadcast and general adver-
saries, perfectly secure MPC among n parties with respect to
(ZC,ZS,ZT,Zf), where Z7 C Z¢ and Z¥ C 25 C Z°, is possible if
Y(De,-) € 2¢, (-, &7),(,E5) e 25,(D",-) € 2" :
(DCUEUD #P A DUEUE #P) v Z5={(0,0)}.
This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

The sufficiency of the bound in Theorem 2 follows basically from Lemma 8 (with
S:={&|(,&)€ 2}yand C = {D | (D,-) € 2" U Z7}). The proof can be
found in the full version. The necessity of the bound is proven in Section 5.

5 Proofs of Necessity

In this section, we prove that the bounds in Theorem 1 and 2 are necessary, i.e.,
if violated, some (reactive) functionalities cannot be securely computed. Triv-
ially, the impossibility for threshold adversaries follows from the impossibility for
general adversaries. The bound for general adversaries (Theorem 2) is violated
if Z5#{(0,0)} and
H(Dca) € an (3518)3 ('ﬂ 528) € Zsa (DT,) €Z:

DCUEUD =P vV DUE UE =P.
Due to monotonicity, we can assume that the sets D¢, &7, £5, and D" are disjoint.
Furthermore, since Z° # {(0,0)}, we can assume that £ # (). We can split the
condition according to whether DU &7 UD"™ =P or D°UE UES = P.

1. 3(De,) € 25, (1, &) e Z5,(D7,-) € ZT : DUEUD =P A & # (. We
further split this case according to whether D¢ = () or D" = (). Note that,
since Z" C Z¢, the case where D¢ =) A D" # () is subsumed by Case 1(b).
(a) H(Dca) SFAS (7€f) € Zz7, (IDT,) €zZ":

DUEUD =P AN EEADANDADAD" #£0
(b) I(De,-) € Z¢,(,E) € Z5 :DUE =P N EFEDAD A

176 Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub

(c) (&) e Z5: & =P A & # (: Due to monotonicity and |P| > 2, this
case is identical to Case 2(b).

2. ADe,) € 29 (&), (&) € 25 :DUE UES =P AN & # 0. Again, we
further split this case according to whether D¢ =) or £5 = (. Note that the
case where D¢ #) A £5 = () is identical to Case 1(b), and the case where
D¢ =0 AE =0 is identical to Case 1(c).

(a) E(Dcv) SIFAS (75f)a (755) S
DUEUES =P NEADNES ADAND#D
(b) 3(, &), (ES)EZ5 1 ESUES =P N EFADNES +0

Case 1(a): 3(D¢,-) € Z¢ (-, &) € 25,(D",-) € Z":
DUEUD =P NEEDN DEDAND £

A state is a requirement for reactive functionalities. We first prove that it is
impossible to hold a state in a specific 3-party setting. This proof is inspired by
[BFHT08].

Definition 3 (State). A state for n parties 1,...,n is a tuple (s1,...,$y) that
defines a bit s, where party i holds s;. A state is secret if the state information
held by corrupted parties contains mo information about the bit s. A state is
correct if it uniquely defines either s or 1. A state is robust if it uniquely defines
either 0 or 1.

Lemma 9. Three parties A, B, and C cannot hold a state (sa,sp,sc) that
defines a bit s providing secrecy in case of a passively corrupted A, correctness
and robustness in case of an actively corrupted B, and correctness in case of an
actively corrupted C'.

Proof. To arrive at a contradiction, assume that (a, b, ¢) is a state for s = 0. Due
to secrecy in case of a passively corrupted A, there exists b’ and ¢’ such that
(a,b',c’) is a valid state for s = 1. Due to correctness and robustness in case of
an actively corrupted B, the state (a,-,c¢) must define the value 0 (where - is a
placeholder for an arbitrary state information held by B). Due to correctness
in case of an actively corrupted C, the state (a,b’,-) defines either 1 or L. As
a consequence, with probability greater 0, the state (a, b, c) can be achieved if
s = 0 and B is actively corrupted, and it can be achieved if s = 1 and C is
actively corrupted. Hence, it must define both 0 and either 1 or 1, which is a
contradiction. O

Given Lemma 9, we can prove the desired bound by reducing the n-party setting
to the 3-party setting specified there: Assume we have a perfectly secure n-
party state (s1,...,8,) for the case 3(D¢,-) € Z¢, (-, &) € Z25,(D",-) € Z" :
DUEUD =PAES £DADC #DAD" # . By assumption we have that D¢,
&7, and D" are disjoint.

We obtain a 3-party state (sa, sp, s¢) from (s1,...,s,) by having A, B, and
C emulate the parties in &, D", and D¢ respectively. The state (s1,...,sy)
tolerates passive corruption of all parties in £ while maintaining secrecy, active

Graceful Degradation in Multi-Party Computation (Extended Abstract) 177

corruption of all parties in D" while maintaining correctness and robustness, and
active corruption of all parties in D¢ while maintaining correctness. Hence, the
resulting state (sa, sp, s¢) is secure for the specific corruption setting specified
in Lemma 9, which is a contradiction.

Case 1(b): (D) € Z¢, (-, &) € Z°:
DUE =P N EADAND £

Analogously to the previous section, we prove that it is impossible to hold a
state in a specific 2-party setting:

Lemma 10. Two parties A and B cannot hold a state (sa,sp) that defines a
bit s providing secrecy in case of a passively corrupted A, and correctness in case
of an actively corrupted B.

Proof. For a contradiction, assume that (a,b) is a state for s = 0. Due to secrecy
in case of a passively corrupted A, there exists b’ such that (a,d’) is a valid state
for s = 1. As a consequence, with probability greater 0, an actively corrupted B
can chose between the state (a,b) and (a,b’), violating correctness. O

Given Lemma 10, we can prove the desired bound by reducing the n-party setting
to the 2-party setting along the lines of the previous section.

Case 2(a): 3(D¢,-) € Z¢, (-, &), (-, &) € Z°:
DUEUE =P N EADNE ADND A

We first prove impossibility of computing the logical “and” in a specific 3-party
setting.

Lemma 11. Consider protocols for three parties A (with input a € {0,1}), B
(with input b € {0,1}), and C (without input) that compute the logical “and” z =
a/Nb and output it to all parties. There is no such protocol providing secrecy when
A or B are passively corrupted, and correctness when C' is actively corrupted.

Proof. To arrive at a contradiction, assume that a secure protocol exists. We
consider the random variables Tapg, Tac and Tgc describing the transcripts of
the channels connecting parties A and B, A and C, and B and C, respectively,
and T describing the transcript of the broadcast channel, for honest protocol
executions.

First, observe that for ¢ = 0, we have z = 0 independent of b, hence
I1(b;Tap,Tac,Tla = 0) = 0. Analogously, for a = 1, A must learn z = b,
hence H(b|Tap,Tac,T,a = 1) = 0. We distinguish two cases, namely when
H(b|Tap,T,a =1) is zero (i) or non-zero (ii).

In case (i), it follows from I(b;Tap,Tac,T|a = 0) = 0, that in particular
we must have I(b;Tap,T|a = 0) = H(bla = 0) — H(b|Tap,T,a = 0) = 0, and
hence H(b|Tap,T,a = 0) = H(bla = 0) > 0. Furthermore, by assumption we
have H(b|Tap,T,a = 1) = 0. That means that party B can decide if a = 0 or
a = 1 by observing the transcripts T4p and T. This contradicts the secrecy in
presence of a passively corrupted party B.

178 Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub

In case (ii), let (tap,tac,tpc,t) be a list of transcripts corresponding to a
protocol run with ¢ = 1 and b = 0. It follows from H(b|Tap,T,a = 1) > 0
that there are transcripts t/y» and tz, such that (tap, 4o, t50,t) is a list of
transcripts corresponding to a protocol run with ¢ = 1 and b = 1. Thus, when
observing tap, t), and t, party A cannot distinguish whether b = 1 and all
parties behave correctly, or whether b = 0 and party C' is actively corrupted pro-
voking a wrong transcript t,~ (which C' achieves with non-zero probability). In
the first scenario, due to completeness, A must output 1. In the second scenario,
due to correctness, party A must output 0 (or abort). This is a contradiction. O

Given Lemma 11, we can prove the desired bound by reducing the n-party setting
to the 3-party setting along the lines of the previous sections.

Case 2(b): 3(-,&), (&) € Z5: ESUES =P N EADNE;s £
As stated in [BGW88,Kil00], it is impossible to compute the logical “and” with
perfect secrecy in a 2-party setting. Again, we can prove the desired bound by

reducing the n-party setting to the 2-party setting along the lines of the previous
sections.

6 Conclusions and Open Problems

We have provided the first MPC protocols with graceful degradation in multiple
dimensions, namely graceful degradation of security, as well as graceful degrada-
tion with respect to the corruption type. This covers all common security notions
for MPC (correctness, secrecy, robustness, fairness, and agreement on abort), as
well as the most prominent corruption types (honest, passive, active), for both
threshold and general adversaries. The protocols are strict generalizations (and
combinations) of hybrid-secure MPC and mixed adversaries. We derived tight
bounds for the existence of perfectly secure MPC protocols for the given settings,
and provided protocols that achieve these bounds.

We leave as an open problem to combine additional dimensions of graceful
degradation (like, e.g., efficiency) with graceful degradation of security and cor-
ruption types (e.g. fail-corruption), as well as to consider other security models
(e.g. computational security). Furthermore, in this work, we focus on MPC in-
cluding reactive functionalities. The bounds for secure function evaluation (SFE)
might be slightly weaker.

References

[Beag9) D. Beaver. Multiparty protocols tolerating half faulty processors. In
CRYPTO ’89, pp. 560-572. Springer-Verlag, 1989.

[BFH'08] 7Z. Beerliova-Trubiniova, M. Fitzi, M. Hirt, U. Maurer, and V. Zikas. MPC
vs. SFE: Perfect security in a unified corruption model. In TCC 2008, pp.
231-250. Springer-Verlag, 2008.

Graceful Degradation in Multi-Party Computation (Extended Abstract) 179

[BGWSS]

[CCDSS|

[CDGST]

[Cha89]

M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In STOC ’88,
pp. 1-10. ACM, 1988.

D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure
protocols. In STOC ’88, pp. 11-19. ACM, 1988.

D. Chaum, I. Damgard, and J. van de Graaf. Multiparty computations
ensuring privacy of each party’s input and correctness of the result. In
CRYPTO 87, pp. 87-119. Springer-Verlag, 1987.

D. Chaum. The spymasters double-agent problem: Multiparty computa-
tions secure unconditionally from minorities and cryptographically from
majorities. In CRYPTO 89, pp. 591-602. Springer-Verlag, 1989.

[DDWY93] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message

transmission. Journal of the ACM, 40(1):17-47, 1993.

[FHHWO03] M. Fitzi, M. Hirt, T. Holenstein, and J. Wullschleger. Two-threshold broad-

[FHMO8]

[FHM99)

[FHWO04]

[GMW87]

[GRROS]

[HM97]
[HMZ08]

[TKLPOG]

[Kat07]
[Kil00]

[LRM10]

[Mau02]
[RBSY]

[Sha79]

cast and detectable multi-party computation. In EUROCRYPT 2003, pp.
51-67. Springer-Verlag, 2003.

M. Fitzi, M. Hirt, and U. Maurer. Trading correctness for privacy in un-
conditional multi-party computation (extended abstract). In CRYPTO 98,
pp. 121-136. Springer-Verlag, 1998.

M. Fitzi, M. Hirt, and U. Maurer. General adversaries in unconditional
multi-party computation. In ASIACRYPT ’99, pp. 232-246. Springer-
Verlag, 1999.

M. Fitzi, T. Holenstein, and J. Wullschleger. Multi-party computation with
hybrid security. In EUROCRYPT 2004, pp. 419-438. Springer-Verlag, 2004.
O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC 87,
pp- 218-229. ACM, 1987.

R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track
multiparty computations with applications to threshold cryptography. In
PODC 98, pp. 101-111. ACM, 1998.

M. Hirt and U. Maurer. Complete characterization of adversaries tolerable
in secure multi-party computation. In PODC' 97, pp. 25-34. ACM, 1997.
M. Hirt, U. Maurer, and V. Zikas. MPC vs. SFE: Unconditional and com-
putational security. In ASTACRYPT 2008, pp. 1-18. Springer-Verlag, 2008.
Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. On combining pri-
vacy with guaranteed output delivery in secure multiparty computation.
In CRYPTO 2006, pp. 483-500. Springer-Verlag, 2006.

J. Katz. On achieving the “best of both worlds” in secure multiparty
computation. In STOC ’07, pp. 11-20. ACM, 2007.

J. Kilian. More general completeness theorems for secure two-party com-
putation. In STOC 00, pp. 316-324. ACM, 2000.

C. Lucas, D. Raub, and U. Maurer. Hybrid-secure MPC: Trading
information-theoretic robustness for computational privacy. In PODC' ’10,
pp- 219-228. ACM, 2010.

U. Maurer. Secure multi-party computation made simple. In SCN 2002,
pp. 14-28. Springer-Verlag, 2002.

T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In STOC ’89, pp. 73-85. ACM, 1989.

A. Shamir. How to share a secret. Communications of the ACM,
22(11):612-613, 1979.

180 Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub

[Yao82] A. C. Yao. Protocols for secure computations (extended abstract). In
FOCS "82, pp. 160-164. IEEE, 1982.

