
Solving Medium-Density Subset Sum Problems

in Expected Polynomial Time?

Abraham D. Flaxman1 and Bartosz Przydatek2

1 Department of Mathematical Sciences, Carnegie Mellon University
Pittsburgh, PA 15213, USA

abie@cmu.edu

2 Department of Computer Science, ETH Zurich
8092 Zurich, Switzerland
przydatek@inf.ethz.ch

Abstract. The subset sum problem (SSP) (given n numbers and a tar-
get bound B, find a subset of the numbers summing to B), is a classic
NP-hard problem. The hardness of SSP varies greatly with the density
of the problem. In particular, when m, the logarithm of the largest input
number, is at least c · n for some constant c, the problem can be solved
by a reduction to finding a short vector in a lattice. On the other hand,
when m = O(log n) the problem can be solved in polynomial time using
dynamic programming or some other algorithms especially designed for
dense instances. However, as far as we are aware, all known algorithms for
dense SSP take at least Ω(2m) time, and no polynomial time algorithm
is known which solves SSP when m = ω(log n) (and m = o(n)).
We present an expected polynomial time algorithm for solving uniformly
random instances of the subset sum problem over the domain

�
M, with

m = O((log n)2). To the best of our knowledge, this is the first algo-
rithm working efficiently beyond the magnitude bound of O(log n), thus
narrowing the interval of hard-to-solve SSP instances.

1 Introduction

The subset sum problem (SSP), one of the classical NP-hard problems, is defined
as follows: given n numbers and a target bound B, find a subset of the numbers
whose sum equals B.

In this paper, we consider a case arising commonly in cryptographic appli-
cations where the numbers are represented by m-bit integers, and the sums are
computed modulo M , where M is another m-bit integer. In other words, the ad-
dition is performed in ZM . More formally, the subset sum problem of dimensions
n and m is:

Given: n numbers a1, . . . , an, with ai ∈ ZM , and a target B ∈ ZM , where M
is an m-bit integer

? Appeared in Proc. STACS 2005, LNCS 3404, pp. 305–314. c© Springer-Verlag 2005.
This version corrects some typos in Sect. 2.3.

2 Abraham D. Flaxman and Bartosz Przydatek

Find: a subset S ⊂ {1, . . . , n}, such that

∑

i∈S

ai ≡ B mod M .

We focus on random instances of the problem, where both the input numbers and
the bound are picked uniformly at random. Similar random instances (with dif-
ferent parameters than we will eventually select) were shown by Chvatal [Chv80]
to be hard instances for a class of knapsack algorithms.

The hardness of random SSP instances varies significantly with the choice of
parameters, in particular the magnitude of m as a function of n (cf. [IN96]):

m > n: such instances are “almost 1-1” (each subset has a different sum), and
are efficiently solvable by a reduction to a short vector in a lattice when
m ≥ c · n, for some constant c [LO85,Fri86,CJL+92].

m < n: such instances are “almost onto” (with multiple solutions for most tar-
gets), and are efficiently solvable by various techniques in high-density case,
i.e., for m = O(log n) (e.g., by dynamic programming, or using methods of
analytical number theory [CFG89,GM91]).

Despite various efficient approaches to dense instances, as far as we are aware,
all these algorithms take at least Ω(M) time, and so none of them works in
polynomial time when m = ω(log n).

1.1 Contributions

In this work we propose an expected polynomial time algorithm which solves
uniformly random SSP instances with m up to (log n)2/16. Our algorithm starts
by dividing the input instance into small, efficiently solvable subinstances. The
solutions of subinstances lead to a reduced instance (simpler than the original
input), which we solve recursively. Finally, the solution of the reduced instance
is combined with the solutions of subinstances to yield a solution of the original
instance.

To the best of our knowledge, this is the first algorithm working efficiently
beyond the magnitude bound of O(log n), thus narrowing the interval with hard-
to-solve SSP instances.

1.2 Related Work

Our algorithm bears some similarity to an approach developed by Blum et al.

[BKW03] in the context of computational learning theory. By employing a re-
cursive approach much like ours, they provide an algorithm for learning an XOR
function in the presence of noise.

Beier and Vöcking [BV03] presented an expected polynomial time algorithm
for solving random knapsack instances. Knapsack and subset sum have some
compelling similarities, but the random instances considered there are quite dif-
ferent from ours, and this leads to the development of quite a different approach.

Solving Medium-Density Subset Sum Problems 3

1.3 Notation and Conventions

A tuple (a1, . . . , an; B, M) denotes an instance of SSP with input numbers ai

and target B to be solved over ZM .
For the clarity of presentation we occasionally neglect the discrete nature of

some terms in summations to avoid the use of rounding operations (floors and
ceilings). However, this simplification does not compromise the validity of our
results. All asymptotic notation is with respect to n, we write f(n) ∼ g(n) to
mean f(n)/g(n) → 1 as n → ∞. All logarithms are base 2.

2 The New Algorithm

We begin with a special case, an algorithm applicable when M is a power of 2.
Then we present another special case, an algorithm applicable when M is odd. In
general, we apply a combination of the two special cases. Given any modulus M
we write M = M̄ ·M ′, with M̄ = 2m̄ and M ′ odd. We use the first algorithm to
reduce the original problem (a1, . . . , an; B, M) to a problem (a′

1, . . . , a
′
n′ ; B′, M ′),

and then use the second algorithm to solve the reduced problem.
In the algorithms below ` is a parameter whose value will later be set to

(log n)/2. For simplicity, the description presented below focuses on the core part
of the algorithms, which can fail on some inputs. Later we show that the failures
have sufficiently low probability so that upon failure we can run a dynamic
programming algorithm (which takes exponential time) and obtain an expected

polynomial time algorithm.

2.1 Subset Sum Modulo Power of 2

Given an instance (a1, . . . , an; B, M), with M = 2m and B 6= 0, we transform
it to an equivalent instance with target zero, i.e., (a1, . . . , an, an+1; 0, M), where
an+1 = M − B and we require that a valid solution contain this additional
element an+1. To solve the target-zero instance we proceed as follows: we find
among the input numbers a maximum matching containing an+1, where two
numbers ai, aj can be matched if the sum (ai + aj) has its ` least significant
bits equal to zero, (in other words, if (ai +aj) ≡ 0 mod 2`.) From the matching
we generate a “smaller” instance of SSP, which we solve recursively: given a
matching of size s, ((ai1 , aj1), . . . , (ais

, ajs
)), where wlog. ais

= an+1, we generate
an instance ((ai1 +aj1)/2`, . . . , (ais

+ajs
)/2`; 0, 2m−`), and we require that a valid

solution of this instance must contain the last element. Note that the instance to
be solved recursively is indeed smaller. It has at most (n + 1)/2 input numbers,
and both the modulus and the input numbers are shorter by ` bits. When the
recursion reaches the bottom, we extract a solution of the original problem in a
straightforward way. Figure 1 presents the algorithm in pseudocode. Note that
the algorithm returns a set S of disjoint subsets, where the the last subset is a
solution to the input problem, and all remaining subsets sum up to zero modulo
2m. These extra subsets are used in the combined algorithm in Sect. 2.3.

4 Abraham D. Flaxman and Bartosz Przydatek

procedure SSPmod2(a1, . . . , an, B, m, `)

an+1 := −B
S := SSPmod2rec(a1, . . . , an+1, m, `)
/** wlog. S = (S1, . . . , Ss) and (n + 1) ∈ Ss **/
return (S1, . . . , Ss−1, Ss \ {n + 1})

procedure SSPmod2rec(a1, . . . , an+1; m, `)

S := ()
V := {1, . . . , n, n + 1}
E := {(i, j) : (ai + aj) ≡ 0 mod 2`}
E′ := maximum matching in G = (V, E) containing vertex (n + 1)
/** wlog. E′ = (e1, . . . , es), with es containing (n + 1) **/
if E′ is non-empty then

if ` < m then

∀ek ∈ E′, ek = (ik, jk), let a′

k := (aik
+ ajk

)/2`

S ′ := SSPmod2rec(a′

1, . . . , a
′

s; m − `, `)
if S ′ is not empty then

/** wlog. S ′ = (S′

1, . . . , S
′

t), with each S′

i ⊆ {1 . . . s}, and s ∈ S′

t **/

∀S′

i ∈ S ′ let Si := �
ek :k∈S′

i
,ek=(ik,jk)

{ik, jk}

S := (S1, . . . St)
else

∀ek ∈ E′, ek = (ik, jk), let Sk := {ik, jk}
S := (S1, . . . Ss)

return S

Fig. 1. The proposed algorithm for solving dense SSP instances modulo a power of 2

We remark that the above method can be used to solve instances of SSP with
some other moduli, for example when M is a power of small primes, or when
M is “smooth” (meaning the product of small primes). However, the method
does not generalize easily to arbitrary moduli, and in particular gives no obvious
way to handle a large prime modulus. In the next section we describe a different
algorithm, which works with high probability for arbitrary odd moduli.

2.2 Subset Sum With An Odd Modulus

The algorithm for SSP with an odd modulus has on a high level the same strategy
as the algorithm from the previous section, i.e., it successively reduces the size
of the numbers by matching them in pairs. However, it differs in one significant
detail. Instead of working on least significant bits, it zeros out the most significant
bits at each step of the recursion.

Given an instance (a1, . . . , an; B, M), with M odd and B 6= 0, we begin, as
in the previous case, by transforming it to an equivalent instance with target 0.
However, this time we use a different transformation. To each input number we

Solving Medium-Density Subset Sum Problems 5

add the value ∆ := (−B/2t) mod M , where t = dlog2 M/`e, so the modified
instance is (a′

1, . . . , a
′
n; 0, M), where a′

i = ai + ∆.
Our motivation for making this transformation becomes clear when we reveal

our plan to make sure that any solution returned by our algorithm contains
exactly 2t elements. Since the sum of the solution of the modified instance is
zero modulo M , the sum of the corresponding numbers in the original instance
is B, as each number of the solution contributes an extra ∆ to the sum and

2t · ∆ ≡ −B mod M.

The fact that M is odd is required to ensure that such a ∆ exists.

Now it is convenient to view elements from ZM as numbers from the interval
I = {−(M − 1)/2, . . . , (M − 1)/2}, following the transformation

a →
{

a, if a ≤ (M − 1)/2;

a − M, otherwise.
(1)

Given a target-zero instance (a′
1, . . . , a

′
n; 0, M) with M odd, we find a solution

of cardinality 2t as follows: we find a maximum matching among the input

procedure SSPmodOdd(a1, . . . , an; B, M, `)

t := dlog2 M/`e
∆ := (−B/2t) mod M
return SSPmodOddRec(a1 + ∆, . . . , an + ∆; M, `, 1)

procedure SSPmodOddRec(a1, . . . , an; M, `, d)

/** we view ai’s as numbers from I = {−(M − 1)/2, . . . , (M − 1)/2} **/
S := {}
V := {1, . . . , n}
E := {(i, j) : ∃k ∈

�
,ai ∈ [kM/2d`+1, (k + 1)M/2d`+1],

aj ∈ [−(k + 1)M/2d`+1,−kM/2d`+1]}
E′ := maximum matching in G = (V, E)
/** wlog. E′ = (e1, . . . , es) **/
if E′ is non-empty then

if d · ` < dlog2 Me then

∀ek ∈ E′, ek = (ik, jk), let a′

k := (aik
+ ajk

)
S′ := SSPmodOddRec(a′

1, . . . , a
′

s; M, `, d + 1)
if S′ is not empty then

/** S′ ⊆ {1 . . . s} **/

S := �
ek :k∈S′,ek=(ik,jk)

{ik, jk}

else

S := {i1, j1}, where e1 ∈ E′, e1 = (i1, j1).
return S

Fig. 2. The proposed algorithm for solving dense SSP instances with an odd modulus

6 Abraham D. Flaxman and Bartosz Przydatek

numbers, where two numbers a′
i, a

′
j can be matched iff there exists an integer k

so that when viewed as elements of the interval I , as in (1), a′
i ∈ [kM/2`+1, (k +

1)M/2`+1] and a′
j ∈ [−(k + 1)M/2`+1,−kM/2`+1]. Again, from the matching

we generate a “smaller” instance of SSP, which we solve recursively. Given a
matching of size s,

((a′
i1 , a

′
j1), . . . , (a

′
is

, a′
js

)),

we generate an instance ((a′
i1

+ a′
j1

), . . . , (a′
is

+ a′
js

); 0, M). By the property of
the matched numbers, the input numbers of the new instance are smaller in the
sense that they are closer to 0 when viewed as elements of interval I . Figure 2
presents in pseudocode the algorithm for odd moduli.

2.3 Combined Algorithm

As mentioned above, given an instance (a1, . . . , an; B, M), for any (m-bit) mod-
ulus M , we write M = M̄ · M ′, with M̄ = 2m̄ and M ′ odd, and apply both
algorithms described above, one for M̄ and one for M ′.

First, we solve the instance (a1, . . . , an; B, M̄) using procedure SSPmod2.
As a solution, we obtain a sequence S = (S1, . . . , Ss) of disjoint subsets of
{1, . . . , n}, where for each i = 1..(s − 1) we have

∑

j∈Si
aj ≡ 0 mod M̄ , and

∑

j∈Ss
aj ≡ B mod M̄(i.e., the last subset is a solution for target B). From this

solution we generate an instance for the second algorithm, (a′
1, . . . , a

′
n′ ; B′, M ′),

where n′ = s−1, a′
i = (

∑

j∈Si
aj) mod M ′ for i = 1..n′, and B′ = B−∑

j∈Ss
aj .

The second algorithm returns a solution S ′ ⊆ {1, . . . , n′}, from which we derive
our answer

Ss ∪
(

⋃

j∈S′

Sj

)

Figure 3 presents the combined algorithm in pseudocode.

3 Analysis

3.1 Correctness

We need to argue that any non-empty subset returned by the algorithm is a
valid solution.

First consider computation modulo M̄ which is a power of 2. At each level
of recursion we match pairs of input numbers so that ` least significant bits are
zeroed, while respecting the constraint, that the last input number is matched.
Therefore, in recursive call, we have zeroed the least significant bits of the re-
sulting numbers, so it follows by induction that all the subsets returned by
SSPmod2rec sum up to 0 mod M̄ .

Moreover, we need to argue that the last subset returned by SSPmod2rec

determines a solution for the given target B. Indeed, if Ss is the last subset
returned by SSPmod2rec, then (n + 1) ∈ Ss and

∑

i∈Ss
ai ≡ 0 mod M̄ . Since

an+1 = −B, this implies that
∑

i∈S\{n+1} ai ≡ B mod M̄ , as desired.

Solving Medium-Density Subset Sum Problems 7

procedure DenseSSP(a1, . . . , an; B, M, `)

S := {}
find M ′ and M̄ = 2m̄ such that M ′ is odd and M = 2m̄ · M ′

S := SSPmod2(a1, . . . , an, B, m̄, `) /** here S = (S1, . . . , Ss), with **/
/** �

j∈Si
aj ≡ 0 mod M̄ for i = 1..(s − 1), and **/

/** �
j∈Ss

aj ≡ B mod M̄ **/

if S is not empty then

∀i = 1..(s − 1) let a′

i := (�
j∈Si

aj) mod M ′

B′ := B − �
j∈Ss

aj

S′ := SSPmodOdd(a′

1, . . . , a
′

s−1; B
′, M ′, `) /** here S′ ⊆ {1, . . . , n′} **/

if S′ is not empty then

S := Ss ∪ � �
j∈S′ Sj �

return S

Fig. 3. The combined algorithm for solving dense SSP instances

To prove the correctness of the computation modulo an odd number M ′,
note that the transformation to a target-zero instance gives the desired result:
any solution is created bottom-up, by first matching two input numbers, than
matching two pairs matched previously, and so on, i.e., at each recursion level the
number of the numbers in a solution is doubled, so the size of the solution subset
is equal 2t, where t is the depth of recursion, which, in turn, equals dlog2 M ′/`e.
Therefore, any solution with target zero will have exactly 2t ·∆ ≡ −B mod M ′

of “extra” sum, i.e., the corresponding original numbers sum up to B mod M ′.
Further, since the algorithm matches the numbers which have opposite signs

but “close” magnitudes, at each level of recursion a portion of ` most significant
bits is zeroed, while avoiding the problems of overflows and wrap-arounds when
adding the numbers. Hence, by induction, the subset returned by SSPmodOddRec

sums up to 0 mod M ′

The correctness of the combined argument follows from the above arguments
and from the Chinese Remainder Theorem, since M = M̄ · M ′, where M̄ and
M ′ are relatively prime.

3.2 Success Probability

We consider the cases with magnitudes m up to (log n)2/16 and we set ` =
(log n)/2. At a given level in the recursion, in both cases (power of 2 and odd),
the success of the algorithm at that level depends on the number of numbers in
the recursion being “enough”. And, the number of numbers in the recursion at a
given level is equal to the number of edges in the matching at the previous level.
We will argue by induction. Let tk denote the number of numbers available at
the beginning of level k of the recursion, and let sk denote the number of edges
in the matching at level k.

8 Abraham D. Flaxman and Bartosz Przydatek

Lemma 1. For sk and tk defined as above, Let Ak denote the event that sk ≥
tk/4. Then

Pr[Ak | A1, . . . ,Ak−1] ≤ exp
(

−n3/4/32
)

.

Proof If A1, . . . ,Ak−1 occur (meaning, in every previous level of the recursion,
we have managed to keep at least 1/4 of the numbers), then we begin level k with
at least n(1/4)(log n)/8 = n3/4 numbers (since there are at most m/` ≤ (log n)/8
levels of recursion total).

Lemma 1 is easier to argue when the modulus is a power of 2. Then the
subinstances are formed by zeroing least significant bits, and so the reduced
numbers are independent and uniformly random. When the modulus is an odd,
the reduced numbers are independent but not uniformly random. Fortunately,
they are distributed symmetrically, in the sense that Pr[a′

i = a] = Pr[a′
i = −a].

We argue this by induction: Suppose Pr[ai = a] = Pr[ai = −a] for all i. Then,
since each edge (i, j) ∈ E yields an a′

k = ai + aj , we have

Pr[a′
k = a] =

∑

b

Pr[ai = b] Pr[aj = a − b]

=
∑

b

Pr[ai = −b] Pr[aj = −(a − b)]

= Pr[a′
k = −a].

This symmetry property is all that we need to show sk is very likely to exceed
tk/4. We can pretend the tk input numbers are generated by a two-step process:
first, we pick the absolute value of the numbers constituting the instance, and
then we pick the sign of each number. Since the distribution is symmetric, in
the second step each number in the instance becomes negative with probability
1/2.

Let Ti denote the number of numbers picked in the first step with absolute
value in the interval [(i−1)M/Ld, iM/Ld], where L = 2` and i = 1 . . . L. Then the
number of negative numbers in interval i is a random variable Xi ∼ Bi(Ti, 1/2),
and we can match all but Yi := |Xi − (Ti − Xi)| numbers in interval i. Further,

E[Yi] =

Ti
∑

k=1

Pr[Yi ≥ k] =

Ti
∑

k=1

Pr[|Xi − Ti/2| ≥ k/2],

and by Azuma’s inequality, this is at most

Ti
∑

k=1

2e−k2/(2Ti) ≤
∫ ∞

x=0

2e−x2
√

2Tidx =
√

2πTi.

Let Y denote the total discrepancy of all the bins,

Y =

L
∑

i=1

Yi.

Solving Medium-Density Subset Sum Problems 9

By linearity of expectation, we have that we expect to match all but

E[Y] = O(
√

T1 + · · · +
√

TL)

numbers. This sum is maximized when T1 = · · · = TL, and minimized when
Ti = t for some i (and all other Tj ’s are zero), hence

O(
√

t) ≤ E[Y] ≤ O(
√

tL) . (2)

Changing a single number in the instance can change the discrepancy by at
most 2, so we use Azuma’s inequality in a convenient formulation given by
McDiarmiad [McD89] (see also Bollobás [Bol88]) and the fact that L = 2` =

√
n

and t ≥ n3/4.

Pr[s ≤ t/4] = Pr[Y ≥ t/2]

≤ Pr[Y ≥ E[Y] + t/4]

≤ e−t/32

≤ exp
(

−n3/4/32
)

.

2

Then, in the case of an odd modulus, the failure probability is bounded by

Pr[failure] ≤
m/`
∑

k=1

Pr[Ak | A1, . . . ,Ak] ≤ (log n) exp−n3/4/32 = O(e−
√

n).

If the modulus is a power of 2, we must also account for the possibility of failure
due to not matching the special number an+1 at some stage. Let Bk denote the
event that the special number is not matched at stage k. This type of failure
only occurs if all tk − 1 other numbers are different from the special number.
Since the mod 2 reductions keep the numbers at stage k uniformly distributed

among m − k` possibilities, the probability of Bk given tk is
(

1 − 1
m−k`

)tk−1

and if A1, . . . ,Ak−1 hold, this is at most exp
(

−(log n)−2n3/4
)

. So again, the

probability of failure is O(e−
√

n).

3.3 Running Time

The running time of the algorithm above is dominated by the time required to
solve all the subinstances, which is bounded by (n−1)/(`−1) ·O(2`) = O(n3/2).

In the case of failure, we can solve the instance by dynamic programming
in time O(2(log n)2). Since (when n is sufficiently large) the failure probability is

much less than 2−(log n)2 , combining the algorithm above with a dynamic pro-
gramming backup for failures yields a complete algorithm that runs in expected
polynomial time.

10 Abraham D. Flaxman and Bartosz Przydatek

3.4 Choice of Parameters

The parameters above are not optimized, but there is a curious feature in the
proof of Lemma 1 that puts a restriction on the range of coefficients c that would
work for m = c(log n)2. Similarly, the range of constants c′ that would work for
` = c′ log n is restricted in a way that does not seem natural. For ` = (log n)/2
and m = (log n)2/16, the number of stages of recursion is small enough that each
stage has sufficiently many numbers to succeed with high probability. But for
` = (log n)/2 and m = (log n)2/8, McDiarmid’s version of Azuma’s inequality
will not work in the way we have used it.

4 Conclusions and Open Problems

We presented an expected polynomial time algorithm for solving uniformly ran-
dom subset sum problems of medium density over ZM , with m bounded by
O((log n)2), where n is the number of the input numbers. As far as we are aware,
this is the first algorithm for dense instances that works efficiently beyond the
magnitude bound of O(log n), thus narrowing the interval with hard-to-solve
SSP instances. A natural open question is whether the bound on the magnitude
can be further extended, e.g. up to (log n)z for some z > 2.

Finally, recall that DenseSSP is a deterministic algorithm which can fail with
non-zero probability. Since this probability is very low, upon failure we can run
a dynamic programming algorithm and still obtain expected polynomial time
in total. A different way of handling failures might be to run DenseSSP again
on randomly permuted input. Note however that such multiple trials are not
fully independent, thus complicating the analysis. It is an interesting problem
to compare this alternative approach with the one we have analyzed.

5 Acknowledgement

We would like to thank Krzysztof Pietrzak for useful discussions.

References

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning,
the parity problem, and the statistical query model. J. ACM, 50(4):506–519,
2003.

[Bol88] B. Bollobás. Martingales, isoperimetric inequalities and random graphs. In
A. Hajnal, L. Lovász, and V. T. Sós, editors, Combinatorics, number 52 in
Colloq. Math. Soc. János Bolyai, pages 113–139. North Holland, 1988.

[BV03] René Beier and Berthold Vöcking. Random knapsack in expected polynomial
time. In Proc. 35th ACM STOC, pages 232–241, 2003.

[CFG89] M. Chaimovich, G. Freiman, and Z. Galil. Solving dense subset-sum problems
by using analytical number theory. J. Complex., 5(3):271–282, 1989.

[Chv80] V. Chvatal. Hard knapsack problems. Operations Research, 28:1402–1411,
1980.

Solving Medium-Density Subset Sum Problems 11

[CJL+92] Matthijs J. Coster, Antoine Joux, Brian A. LaMacchia, Andrew M. Odlyzko,
Claus-Peter Schnorr, and Jacques Stern. Improved low-density subset sum
algorithms. Comput. Complex., 2(2):111–128, 1992.

[Fri86] Alan Frieze. On the Lagarias-Odlyzko algorithm for the subset sum problem.
SIAM J. Comput., 15(2):536–539, 1986.

[GM91] Zvi Galil and Oded Margalit. An almost linear-time algorithm for the dense
subset-sum problem. SIAM J. Comput., 20(6):1157–1189, 1991.

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably
as secure as subset sum. Journal of Cryptology, 9(4):199–216, Fall 1996.

[LO85] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems.
J. ACM, 32(1):229–246, 1985.

[McD89] Colin McDiarmid. On the method of bounded differences. In London Math-

ematical Society Lecture Note Series, volume 141, pages 148–188. Cambridge
University Press, 1989.

