
E�cient Byzantine Agreement

Secure Against General Adversaries ?

(Extended Abstract)

Matthias Fitzi and Ueli Maurer

Department of Computer Science
Swiss Federal Institute of Technology (ETH), Zurich

CH-8092 Zurich, Switzerland,
f�tzi,maurerg@inf.ethz.ch

Abstract. This paper presents protocols for Byzantine agreement, i.e.
for reliable broadcast, among a set of n players, some of which may be
controlled by an adversary. It is well-known that Byzantine agreement
is possible if and only if the number of cheaters is less than n=3. In
this paper we consider a general adversary that is speci�ed by a set of
subsets of the player set (the adversary structure), and any one of these
subsets may be corrupted by the adversary. The only condition we need
is that no three of these subsets cover the full player set. A result of Hirt
and Maurer implies that this condition is necessary and su�cient for the
existence of a Byzantine agreement protocol, but the complexity of their
protocols is generally exponential in the number of players. The purpose
of this paper is to present the �rst protocol with polynomial message and
computation complexity for any (even exponentially large) speci�cation
of the adversary structure. This closes a gap in a recent result of Cramer,
Damg�ard and Maurer on applying span programs to secure multi-party
computation.

Key words. Broadcast, Byzantine agreement, general adversary, multi-
party computation, fault detection.

1 Introduction

1.1 Byzantine Agreement

In this paper, we focus on unconditionally secure protocols for Byzantine agree-
ment, i.e. the security does not rely on any computational assumptions. We
consider the standard model of a complete (fully connected) synchronous net-
work among a set P of n players with pairwise authenticated communication
channels.

? Appeared in the Proceedings of the Twelfth International Symposium on Distributed
Computing (DISC), 1998. Research supported by the Swiss National Science Foun-
dation (SNF), SPP project no. 5003-045293

With respect to this model, the goal of a broadcast (or Byzantine agreement)
protocol is to let some speci�c player, the dealer, reliably distribute some value
to all other players. Even in the presence of an adversary that corrupts certain
players the protocol must satisfy the conditions given in De�nition 1. In the
sequel, corrupted players are called faulty whereas uncorrupted players are called
correct.

De�nition 1. A protocol achieves Byzantine agreement (or is a broadcast pro-
tocol) if and only if the following conditions are satis�ed:

1. Termination: After a �nite number of rounds, every correct player decides
on a value, i.e. the protocol terminates for all correct players.

2. Agreement: All correct players decide on the same value.
3. Validity: If the dealer is correct then all correct players decide on the dealer's

original value.

A broadcast protocol secure against an adversary who can corrupt up to
arbitrary t of the involved players is called t-resilient.

Pease, Shostak and Lamport proved in [PSL80,LSP82] that the condition
t < n=3 is a tight bound for the existence of a Byzantine agreement protocol.
The protocol they proposed requires exponential message complexity and hence
is not practical. However, their protocol is round-optimal, as Fischer and Lynch
proved in [FL82] that the lower bound on the number of rounds for any perfectly
secure Byzantine agreement protocol with t corrupted players is t+ 1. E�cient
protocols for Byzantine agreement with resilience t < n=3 have been proposed in
[DFF+82,BDDS87,FM88,BGP89]. Finally Garay and Moses [GM93] presented
the �rst protocol that is both e�cient and round-optimal.

1.2 General Adversaries

Ben-Or, Goldwasser and Wigderson [BGW88] and independently Chaum, Cr�e-
peau and Damg�ard [CCD88] proved that, in a threshold setting where up to t
arbitrary players can be corrupted by an adversary, secure multi-party compu-
tation among a set of n players is possible for any function if and only if less
than a third of the players are actively corrupted (t < n=3). Hirt and Maurer
[HM97] extended this result to general (rather than threshold) adversary struc-
tures. An adversary structure is a monotone set of subsets of the player set. A
similar concept was proposed independently by Malkhi and Reiter in [MR97]
in the context of quorum systems. As a strict generalization of the threshold
setting, any player subset of the adversary structure may be corrupted in the
general adversary setting. The threshold setting (t < n=3) is a special case of
the general setting where the adversary structure consists of all player subsets
of cardinality at most t. As proven in [HM97], multi-party computation secure
against a general adversary is possible for any function if and only if no three
elements (player subsets) of the adversary structure cover the full player set |
this is also a tight bound for the existence of a broadcast protocol as immediately
follows by the optimality proof in [LSP82].

2

Example 1. In order to see that it is useful to handle the general adversary
model for multi-party computation (or for broadcast in particular) consider, for
example, the player set P = fd; e; f; g; h; ig.1 As de�ned later in the text, we
describe an adversary structure A by its basis A where only all maximal player
subsets of A are contained.

In the threshold setting, according to the condition t < n=3, at most one of
the players in P can be tolerated to be corrupted by the adversary. Hence the
(maximal) adversary structure tolerated by a threshold protocol is de�ned by
the basis

A = ffdg; feg; ffg; fgg; fhg; figg :

In contrast, by considering general adversaries, strictly more corruptions can
be tolerated. Consider the adversary structure de�ned by the basis

A = ffd; e; fg; fd; gg; fe; hg; fe; ig; ff; ggg :

No three elements of A cover the full player set. Hence, by the result in [HM97],
there is a multi-party computation for every function that tolerates any player
subset in A to be corrupted. Besides several player pairs that are tolerated to
be corrupted, the protocol is even resilient against a player triplet (fd; e; fg).
Note that for every single player there is at least one second player that can be
tolerated to be corrupted at the same time.

1.3 Contributions of this Paper

Broadcast protocols have been studied extensively for the threshold setting but
not for the general adversary setting introduced in [HM97]. Broadcast is a special
case of multi-party computation. Hence, the protocol of [HM97] for general multi-
party computation can be directly used to implement broadcast. A di�erent
such broadcast protocol is described in [MR97]. However, the computation and
message complexities of these protocols are generally exponential in the number
of players.

E�cient broadcast is an important primitive used as a subprotocol in various
applications such as secure multi-party computation. For example, the results of
Cramer, Damg�ard and Maurer in [CDM98] rely on the existence of a broadcast
protocol, secure against a general adversary, with computation and message
complexity polynomial in the number of players | without giving a solution for
this problem. This paper closes this gap by proposing an algorithm to construct
a secure broadcast protocol for any general adversary structure satisfying that no
three elements of the structure cover the full player set. The resulting protocols
have communication complexity polynomial in the number n of players. The
computation complexity is polynomial in n assuming only that there exists an
algorithm polynomial in n for deciding whether a given subset of the players is
an element of A.

1 Throughout we denote the players with single letters and start enumerating them
by d. In the context of broadcast d will be used to name the dealer.

3

Finally, some techniques for extending threshold protocols to the general
adversary setting proposed in this paper are generic and can also be applied to
other broadcast protocols designed for the threshold setting.

1.4 De�nitions

The set of players involved in the broadcast protocol is denoted by P . An ad-
versary structure A over the player set P is a monotone set of subsets of P ,
i.e.

A � 2P with A 2 A =) 8A0 � A : A0 2 A:

An element A 2 A is called an adversary set. For an adversary structure A, A
denotes the basis of A, i.e. the set of all maximal elements of A:

A := fA 2 A j6 9A0 2 A : A � A0g :

The meaning of an adversary structure A is that the players of exactly one ele-
ment of A may be corrupted by the adversary.

De�nition 2. A broadcast protocol that, according to De�nition 1, is secure
against a general adversary that corrupts the players of an arbitrary element of
a structure A is called A-resilient.

Later we will consider the properties of subsets S � P rather than of the
whole player set P . In particular, we will be interested in the properties of the
structure A when restricted to some player subset S � P , i.e. by reducing all
adversary sets A 2 A to the players in S:

AjS := fA \ S j A 2 Ag:

De�nition 3. An adversary structure A over a player set P satis�es the pred-
icate Qk(P;A) if no k sets in A cover the full player set:

Qk(P;A) :() 8Ai1 ; Ai2 ; :::; Aik 2 A :

k[
j=1

Aij 6= P:

We will mostly be interested in these predicates applied to subsets S �
P rather than to P . Instead of writing Qk(S;AjS) for \no k adversary sets
(restricted to S) cover the player subset S" we will use the shorthand notation

Qk(S;A) or even Qk(S) if A is evident from the context.

1.5 Outline

In Section 2 simple but ine�cient broadcast protocols secure against general ad-
versaries are discussed, more precisely, for any given player set P and adversary
structure A satisfyingQ3(P;A) we describe an A-resilient protocol | we refer to

4

a particular protocol of this kind as a basic protocol. A basic protocol is obtained
by modifying the \exponential" threshold protocol of [BDDS87]. Section 3 de-
scribes e�cient broadcast protocols based on the basic protocols of Section 2,
i.e. for any given player set P and adversary structure A satisfying Q3(P;A) we
describe an A-resilient protocol with communication and computation complex-
ity polynomial in the number of players | a particular protocol of this kind will
be referred to as an e�cient protocol. The paper ends with some conclusions in
Section 4.

2 The Basic Broadcast Protocol

Using the terminology of [BDDS87], the basic protocol proceeds in two subse-
quent phases, information gathering (IG) and data conversion (DC). The in-
formation gathering phase consists of a �xed number of communication rounds
among the players. Whenever a player p is expected to send a message to some
other player q but fails to do so, then q decides for the default value 0 to be his
received value. In the data conversion phase, every player locally computes his
result (i.e. the broadcast value he decides on) with no further communication.
For the sequel, let P be the player set with cardinality jP j = n and let d be the
dealer. The remaining players will be enumerated by the letters e, f , etc.

2.1 Information Gathering

Every player maintains a local tree called information gathering tree or IG-tree
for short which is used to keep track of all messages received during information
gathering. The structure of this tree is exactly the same for every player. Every
node of the IG-tree corresponds to a player p 2 P . The nodes are labelled by a
list � of players | the list of all players corresponding to the nodes in the path
from the root to the node itself, i.e. the last element of this list is the node's
corresponding player.

Throughout this paper, players are denoted by small Roman letters whereas
lists of players are denoted by small Greek letters (or by strings if their elements
are mentioned explicitly). For a node �p, player p is called the corresponding
player of �p and, conversely, we call �p a corresponding node of player p. The
set of all players corresponding to a node � or to one of its predecessor nodes are
called the corresponding players of �'s message path. Let the height of a node �
in the IG-tree be de�ned as its number of predecessors in the tree and let the
tree level of a node � be level(�) = height(�) + 1 (hence the root node is of
level 1).

The root node of the IG-tree corresponds to the dealer d. Every node � of
some tree level k is either a leaf or an internal node with n� k children | one
child �p for each player p 2 P that does not occur in �. A node � is de�ned to
be an internal node exactly if there exists an adversary set A 2 A that contains
all players in �, else the node is de�ned to be a leaf. Hence every path from the
root to a leaf consists of a sequence of internal nodes that correspond to the

5

Fig. 1. IG-Tree for Example 1

players of an adversary set A 2 A and �nally of a leaf corresponding to a player
p =2 A. There is no adversary set A0 containing all players corresponding to the
nodes in the path (6 9A0 : A0 � A [fpg). Note that the height of the IG-tree is
by one greater than the cardinality of an adversary set A 2 A of maximal size
(and hence at most n since P =2 A). Figure 1 illustrates this construction for
the adversary structure A over the player set P = fd; e; f; g; h; ig of Example 1
(de�ned by the basis A = ffd; e; fg; fd; gg; fe; hg; fe; ig; ff; ggg).

The IG-tree describes the local view of the message
ow during information
gathering by the individual players. The nodes of the tree are used to store the
received messages whereas the edges of the tree describe the dependencies of
these messages on each other. Every message received during round k is stored
in exactly one node of level k. The local tree of player p is denoted by treep. The
value that player p stores at the node � of his IG-tree is denoted by treep(�).

In the �rst communication round of information gathering, the dealer d dis-
tributes his original value (i.e. the value to be broadcast) to every other player
and decides on this value as his result of the broadcast. The dealer will not
be involved in any subsequent communication round. Every player p stores the
value received by the dealer at the root node d of his IG-tree. According to the
structure of the IG-tree, in the k-th round (k > 1) of the protocol every player
p distributes to every other player the value treep(�) for each node � of level
k � 1 that has a child node �p and a receiver r stores this message at this node
�p of his IG-tree.2

Hence, any message received by a player p originates from the dealer and
is passed on step by step through some speci�c message path involving other
players3, and such a message is stored in the node that is labelled by the string
corresponding to its message path (excluding the receiver). For example assume
the IG-tree in Figure 1 to be treeg . Then the meaning of the value treeg(defi) =
x stored by player g is that \player i told g that player f told i that player e
told f that the dealer d told e that x was his original value".

2 Actually, messages must consist of a value and additional information about the
node of the IG-tree which is referred to by the message. In the sequel we just assume
a message to consist of this value and we neglect this additional information.

3 Note that faulty intermediary players may alter the contents of the message.

6

2.2 Data Conversion

After information gathering, in the data conversion phase, every player p com-
putes his result (i.e. the broadcast value he decides on) on his IG-tree in a \bot-
tom up manner" by starting with the leaves and recursively, for every internal
node, computing a value that is determined by the values previously computed
for its child nodes. The function to perform this computation is called resolve.
In order to de�ne the function resolve, we introduce the new value ? which is
de�ned to be outside the domain of the value to be broadcast. ? will only result
for nodes with its corresponding player being faulty, i.e. it is used to indicate
\severe" inconsistencies for such a node. Indication of inconsistencies is only
needed for the e�cient protocol in Section 3 and the resolve-function could in
fact be simpli�ed for the basic protocol discussed here.

De�nition 4. The set of all players corresponding to the children of a node �
of the IG-tree is denoted by C(�). The subset of all correct players among the
players corresponding to the children nodes of � is denoted by Cc(�).

The resolve function takes a node of the IG-tree as an input and outputs the
value to be assigned as the resolved value for the given node (described here for
the local tree of player p):

resolvep(�) :=

8>><
>>:

treep(�) if � is a leaf;

v 9! v 6=?: Q1(fc 2 C(�) j resolvep(�c) = vg);
0 else if � = d;
? else:

In other words, an internal node � is resolved to the value v if there is
a unique value v such that the children of � resolving to v are not covered
by any adversary set A 2 A (more precisely, if the set of their corresponding

players satis�es Q1) | else the default value ? (or 0) is assigned. The distinction
between the last two cases in the de�nition of the resolve function is only needed
for the correctness of the e�cient protocol in Section 3 (besides this, we want
the broadcast value to be in the original domain).

Since ? is not in the domain of the broadcast, a correct player is not to
distribute ? during information gathering. If, for some node, a correct player
receives any value outside the domain during information gathering he will store
the default value 0 instead.

2.3 Protocol Analysis

De�nition 5. A node � of the IG-tree is common with value v if every correct
player computes the same value v for � in the data conversion phase. The subtree
rooted at node � has a common frontier if every path from � to a leaf contains
at least one common node.

Lemma 1. For any adversary structure A over a player subset S � P satisfy-
ing Qk(S;A) and any adversary set A 2 A, the restricted adversary structure

Aj(SnA) satis�es Q
k-1(SnA;Aj(SnA)).

7

Proof. Let A 2 A be an adversary set. Then Qk(S;A) implies 69Ai1 ; � � � ; Aik�1 :
A [Ai1 [� � � [Aik�1 = P and hence 6 9Ai1 ; � � � ; Aik�1 : Ai1 [� � � [Aik�1 = P nA

which implies Qk-1(SnA;Aj(SnA)).

Corollary 1. If the adversary structureA over the player set P satis�es Qk(P;A)

then for every internal node � of the IG-tree, AjC(�) satis�es Q
k-1(C(�);AjC(�)).

Proof. By construction, for every internal node � there is an adversary set A 2
A that contains exactly the players corresponding to �'s message path, and
C(�) = P nA. Hence, by Lemma 1, we have Qk-1(C(�);AjC(�)).

Lemma 2. All nodes � = �r that correspond to a correct player r are common
with the value treer(�) = v.

Proof. Let p and r be correct players. We have to show that resolvep(�) =
treep(�) = treer(�) for player p. Since r is correct, he distributes the same value
treer(�) = v to all other players, and hence treep(�) = treer(�) = v.

It remains to prove that resolvep(�) = treep(�). If � is a leaf then by def-
inition resolvep(�) = treep(�). Assume the lemma holds for all nodes of level

k of the IG-tree and let � = �r be a node of level k � 1. By condition Q3(P)

and by Corollary 1 we have Q2(C(�)). The adversary corrupts the players of
exactly one adversary set A 2 A. But by discounting any such adversary set
A from the children player set C(�), the set Cc(�) = C(�)nA of all correct

players in C(�) still satis�es Q1(Cc(�)) (by Corollary 1). Since these players
are correct their corresponding nodes (of level k) are common with value v by

induction, and hence Q1(fc 2 C(�) j resolvep(�c) = vg). On the other hand,
for at most all players a 2 A of one adversary set A 2 A, resolvep(�a) 6= v

and hence :Q1(fc 2 C(�) j resolvep(�c) 6= vg). Hence by the de�nition of the
resolve function, since v is unique, player p computes resolvep(�) = v.

Lemma 3. Let � be a node of the IG-tree. If there is a common frontier in the
subtree rooted in � then � is common.

Proof. A leaf node has a common frontier exactly if it is common, hence the
lemma holds for all leaves. It remains to prove the lemma for internal nodes. For
the sake of contradiction, assume an internal node � not to be common but to
have a common frontier. Since � is not common there must be a non-common
child of � | otherwise, every correct player would compute the same value for �
during data conversion and � would be common. This argument holds for such a
non-common node as well, and can be recursively applied down to the leaves of
the IG-tree. Thus there is a path from � to one of the leaves of its subtree that
contains no common node and hence � has no common frontier. This contradicts
the assumption.

Theorem 1. For any player set P and adversary structure A satisfying Q3(P)
the basic protocol is A-resilient.

8

Proof. By the construction of the IG-tree, for every path from the root d to
a leaf node there exists no adversary set A 2 A that contains all players that
correspond to the nodes in this path. Hence, on every such path there is a correct
player, so by Lemma 2 the root has a common frontier and by Lemma 3 the root
is common. Finally, if the dealer is correct, then by Lemma 2, the root node is
common with the original value of the dealer.

3 The E�cient Broadcast Protocol

It is evident that for any adversary structure A with exponential size in jP j the
basic protocol is not e�cient since the number of messages to be sent is of size

(jAj) (the size of the IG-tree). In order to make the basic broadcast protocol
e�cient, we generalize and apply the shifting technique introduced in [BDDS87].

We �x some protocol parameter b with 4 � b < n. The original IG-tree is
reduced by pruning all nodes of level l > b. This reduced tree de�nes a protocol
with b communication rounds which is called reduced protocol. In the reduced
protocol, information gathering consists of exactly that subset of messages of
the basic protocol for which there exists a node in the reduced tree to store the
received message. Data conversion is de�ned in the same way as for the basic
protocol. In the sequel we assume that the original IG-tree is of height h � b
and that hence the reduced IG-tree is not identical to the original IG-tree of the
basic protocol. In the other case we de�ne the e�cient protocol to be equal to
the basic protocol (since we do not need the protocol extensions described in
this section).

3.1 Protocol Overview

The e�cient protocol consists of executing the reduced protocol in sequence forl
n�3
b�3

m
+ 1 runs as follows4: The �rst run of the reduced protocol proceeds in

the same way as the basic protocol (with the di�erence that it only proceeds
for b communication rounds). In every subsequent run (say the m-th run) of
the reduced protocol the �rst communication round of the protocol is omitted.
Instead of receiving a value from the dealer, every player p assigns the resolved
root value computed at the end of the previous run to the root node of his
reduced IG-tree:

tree(m)
p (d) := resolve(m�1)

p (d) :

Apart from this the subsequent runs proceed in the same way as the �rst one.
The reason for pruning the IG-tree to obtain the reduced protocol is to reduce

the communication complexity of the protocol to polynomial in the number of
players. However, as a consequence, there is not necessarily a common frontier
for the root node when the reduced protocol is run and hence the root node is

4 Note the di�erence between the terms round and run. The term round refers to a
single communication round of a protocol whereas run refers to an execution of the
reduced protocol which consists of several communication rounds.

9

not necessarily common. This problem can be solved by repeating the reduced
protocol for a su�cient number of times. The following important properties will
be proven:

{ If the dealer is correct then the root node is common with his original value
after the �rst run of the reduced protocol (this directly follows since the node
d has a common frontier).

{ If after some run m of the reduced protocol the root node of the IG-tree is
common with some value v then the root node will be common with value v
for every subsequent runm0 > m, i.e. the agreed value will remain persistent.

{ There is a method for detecting faulty players such that if afterm runs of the
reduced protocol the root node is not common, then there are m(b� 3) + 1
players that are globally detected (i.e. detected by all correct players) to be
faulty.5

Finally, after
l
n�3
b�3

m
+ 1 runs, either all faulty players have been globally

detected or Byzantine agreement has been achieved. If we let every correct player
replace all messages from detected players by the default value 0, then Byzantine
agreement is also achieved in the former case because all globally detected players
are treated like consistently distributing the default value in the last round.

We now describe additional details of the e�cient protocol.

3.2 Fault Handling

Every player p maintains a player list Lp and adds to it in each round all players
he reliably detects to be faulty. This list of detected players will never contain
any correct player.

Let p be a correct player. In order to �nd conditions for the detection of faulty
players by p, we �rst derive a condition that must be satis�ed for every internal
node of the IG-tree corresponding to a correct player. Let �r be an internal node
corresponding to a correct player r. During information gathering, r distributes
the same value treer(�) = v for his node � to every player. Accordingly, in the
following round, only a faulty player q may send to p a distinct value w 6= v for
his node �r. Hence there exists an adversary set A 2 A and a unique value v
such that all players q with treep(�rq) 6= v are covered by A. Moreover, the set
of already detected players Lp must be a subset of such an A, i.e. the condition

9v : 9A 2 A : A � (fc 2 C(�r) j treep(�rc) 6= vg [Lp)

is satis�ed. Hence player r can be reliably detected to be faulty by player p if
there is no such value v.

This rule can be applied during information gathering: player p adds player r
to Lp if there is no such value v. By Lemma 2, this even holds for the converted
values of �r's child nodes. Hence we can apply the same rule for the resolved

5 A player does not necessarily know which of the players he detected are globally
detected and which are not.

10

values as well and we obtain the following fault detection rules to be applied by
player p for every internal node �r:

Fault detection during information gathering (FD1):

Lp := Lp [frg if 69v : :Q1(fc 2 C(�r) j treep(�rc) 6= vg [Lp):

Fault detection during data conversion (FD2):

Lp := Lp [frg if 69v : :Q1(fc 2 C(�r) j resolvep(�rc) 6= vg [Lp):

Fault Masking:
After a player r has been added to the list Lp by player p in some communication
round k, then every message by player r in round k and any subsequent round
is replaced by the default value 0. Once a player has been globally detected (by
all correct players), he will be masked to send the same values to all correct
players. Thus, every node �r for which a value is received after player r's global
detection will be common.

We are ready to summarize the complete protocol (the description is given
for the view by player p).

E�cient Protocol:

1. Dealer distributes original value to all players.

2. FOR i := 1 TO
�
n�3
b�3

�
+ 1

3. Information gathering with fault detection FD1 and fault masking

for b� 1 rounds.
4. Local data conversion with fault detection FD2 by every player p.
5. treep(d) := resolvep(d).
6. END.

7. Decide on treep(d) for the broadcast result and halt.

3.3 Protocol Analysis

We �rst show that if in any run (FOR-loop in the above protocol) Byzantine agree-
ment is achieved, then the agreement remains persistent (with the same value)
for any following run. The following lemma follows immediately by Lemma 2.

Lemma 4. If all correct players store the same value at the root of the IG-
tree at the beginning of information gathering (i.e. before step 3 of some run
of the reduced protocol) then the root will be common with this value after data
conversion.

The following lemmas will be needed to argue about global detections of
faulty players.

Lemma 5. Let � be an internal node. If all players corresponding to �'s message
path are faulty, then the subset Cc(�) � C(�) of all correct players among the

players corresponding to the children of � satis�es Q2(Cc(�)).

11

Proof. By construction, C(�) consists of all players except for the players cor-
responding to �'s message path. Let A 2 A contain all players that corre-
spond to �'s message path and let A be the corrupted adversary set. Then
Cc(�) = C(�)nA = P nA holds and by Lemma 1 we have Q2(P nA) and hence

Q2(Cc(�)).

Lemma 6. Let p and q be correct players and let �r be an internal node of the
IG-tree but not the root node. Assume all players corresponding to �r's message
path to be faulty. If p and q obtain di�erent values for �r after data conversion
neither of which is ?, then r 2 Lp \ Lq.

Proof. For any value v let Cv � Cc(�r) denote the set of correct players c for
which treep(�rc) = v and let Cv = Cc(�r)nCv .

Suppose that r =2 Lp after data conversion. According to the fault detection
rule FD1, since p has not detected r to be faulty, there is a value v such that
:Q1(fc 2 C(�r) j treep(�rc) 6= vg [Lp). This still holds when restricted to all

correct players in C(�r): :Q1(Cv [Lp).

By Lemma 5 the correct children of �r satisfy Q2(Cc(�r)). Since there is an

adversary set A 2 A with Cv � A, we obtain Q1(Cv) for Cv = Cc(�r)nCv by
Lemma 1.

The correct children of �r are common due to Lemma 2 and hence all correct
players will resolve value v for the children nodes corresponding to the players
in Cv :

Q1
��
c 2 Cc(�r) j resolvep(�rc) = resolveq(�rc) = v

	�
:

By the uniqueness condition in the de�nition of the resolve function it follows
that resolveq(�r) 2 fv;?g. This contradicts the assumption.

Lemma 7. Let �r be an internal node of the IG-tree, but not the parent of a
leaf. If all players corresponding to the path of �r are faulty and there is a correct
player p who does not detect r to be faulty by either of the fault detection rules,
then �r is common.

Proof. Since p does not detect r during data conversion, there is a value v with
resolvep(�r) = v and

:Q1
��
c 2 C(�r) j resolvep(�rc) 6= v

	
[Lp

�
:

Let q be any other correct player and let s =2 Lp be a player with resolvep(�rs) =
v. By Lemma 6 resolveq(�rs) 2 fv;?g (in fact v by Lemma 2 if s is correct),
and hence for any w =2 fv;?g, the subset of the children of �r for which w is
resolved by player q satis�es

fc 2 C(�r) j resolveq(�rc) = wg � fc 2 C(�r) j resolvep(�rc) 6= vg [Lp:

Therefore for all values w =2 fv;?g we have

8w;w =2 fv;?g : :Q1(fc 2 C(�r) j resolveq(�rc) = wg):

12

On the other hand, by Lemma 5 we haveQ2(Cc(�r)) and hence Q
1(fc 2 Cc(�r) j

resolvep(�rc) = vg) for all correct children for which player p resolves v. These
children are common by Lemma 2. Hence q computes resolveq(�r) = v because
v is a unique value according to the de�nition of the resolve function.

Due to Lemma 7, after the initial run of the reduced protocol of b � 4
rounds, either the root is common or at least b � 2 faulty players have been
globally detected: If the root is not common then there is no common frontier
and hence, by Lemma 2, there is a path from the root to a leaf in the IG-tree
that contains only non-common nodes (corresponding to faulty players). All of
these corresponding players are globally detected | except for the leaf and its
parent node which are not necessarily detected.

In every subsequent run, if Byzantine agreement is not achieved, then further
b� 3 players are globally detected. Nodes that correspond to players that have
been globally detected will be common since fault masking guarantees that all
correct players consistently store the default value at such nodes. Hence it is
guaranteed that the detections of a new run correspond to players that have
not been detected before. On the other hand, the dealer does not distribute any
values after the �rst run of the basic protocol because the values for the root
node are locally computed by the players. Hence, there is no masking for the
dealer and the dealer will be redetected in every subsequent run not achieving
Byzantine agreement. This is the reason why only b�3 further global detections
are guaranteed in the subsequent runs.

Theorem 2. For any player set P and adversary structure A satisfying Q3(P)
the e�cient protocol achieves Byzantine agreement. The algorithm has message
complexity polynomial in the size n of the player set and round complexity less
than 2n. Assuming an algorithm polynomial in n for deciding whether a given
player set is an element of A, the computation complexity is polynomial in n.

Proof. Suppose that Byzantine agreement has not been achieved after the given
protocol has terminated. According to Lemma 4, agreement was not achieved in
any previous round, i.e. the root of the IG-tree has never been common. Hence,
due to Lemma 7, b� 2 faulty players have been detected in the �rst run and for
every subsequent run, another b� 3 players have been globally detected. Hence
the number k of globally detected players is

k = (b� 2) +

�
n� 3

b� 3

�
(b� 3) � (b� 2) + (n� 3) � n� 1:

Since at least n � 1 players have been globally detected, there is at most one
single correct player. Hence, by de�nition, all nodes of the IG-tree are common
(for all correct players), contradicting the assumption.

The message and computation complexities follow immediately from the con-

struction of the protocol. The round complexity is r = b+ (b� 1)
l
n�3
b�3

m
< 2n.

13

3.4 Optimizations

The e�cient protocol can be optimized. For simplicity the protocol was described
in a way that (except for the dealer) every message that is distributed, must be
distributed to every player. In fact this is not necessary. If a player p must
distribute a value treep(�) of his IG-tree then it su�ces that he distributes
this value only to those players that are not corresponding to � or any of its
predecessor nodes. In other words, the IG-tree of a player p will contain no
node � = �p
 with j
j > 0. The e�cient protocol can further be optimized by
analyzing the concrete structure of the given adversary set which can yield a
protocol that needs less runs of the basic protocol than described above.

4 Conclusions

For any adversary structure A for a player set P for which no three elements
of A cover the full player set we have given an A-resilient broadcast protocol
with communication complexity polynomial in the cardinality n = jP j of the
player set. The computation complexity is polynomial in n assuming only the
existence of an algorithm polynomial in n for deciding whether a given subset
of the players is an element of A. Moreover, our methods for generalizing the
threshold protocol of [BDDS87] are universal and we expect them to be directly
applicable for other broadcast protocols such as those of [FM88,GM93].

5 Acknowledgments

The authors would like to thank Ronald Cramer, Ivan Damg�ard, Juan Garay
and Martin Hirt for helpful hints and interesting discussions.

References

[BDDS87] A. Bar-Noy, D. Dolev, C. Dwork, and H. R. Strong. Shifting gears: Changing
algorithms on the
y to expedite Byzantine agreement. In Proceedings of
the Sixth Annual ACM Symposium on Principles of Distributed Computing,
pages 42{51, 1987.

[BGP89] P. Berman, J. A. Garay, and K. J. Perry. Towards optimal distributed
consensus (extended abstract). In 30th Annual Symposium on Foundations
of Computer Science, pages 410{415. IEEE, 1989.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proc. 20th
ACM Symposium on the Theory of Computing (STOC), pages 1{10, 1988.

[CCD88] D. Chaum, C. Cr�epeau, and I. Damg�ard. Multiparty unconditionally secure
protocols (extended abstract). In Proc. 20th ACM Symposium on the Theory
of Computing (STOC), pages 11{19, 1988.

[CDM98] R. Cramer, I. Damg�ard, and U. Maurer. Span programs and general secure
multi-party computation, Manuscript, 1998.

14

[DFF+82] D. Dolev, M. J. Fischer, R. Fowler, N. A. Lynch, and H. R. Strong. An
e�cient algorithm for Byzantine agreement without authentication. Infor-
mation and Control, 52(3):257{274, March 1982.

[FL82] M. J. Fischer and N. A. Lynch. A lower bound on the time to assure inter-
active consistency. Information Processing Letters, 14(4):183{186, 1982.

[FM88] P. Feldman and S. Micali. Optimal algorithms for Byzantine agreement. In
Proc. 20th ACM Symposium on the Theory of Computing (STOC), pages
148{161, 1988.

[GM93] J. A. Garay and Y. Moses. Fully polynomial Byzantine agreement in t+ 1
rounds (extended abstract). In Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, pages 31{41, 1993.

[HM97] M. Hirt and U. Maurer. Complete characterization of adversaries tolera-
ble in secure multi-party computation. In Proc. 16th ACM Symposium on
Principles of Distributed Computing (PODC), pages 25{34, August 1997.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382{401,
July 1982.

[MR97] D. Malkhi and M. Reiter. Byzantine quorum systems. In Proceedings of
the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages
569{578, 1997.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. Journal of the ACM, 27(2):228{234, April 1980.

15

