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Abstract
We consider monotone span programs as a tool for representing,
we will say computing, general access structures. It is known that if an
access structure , is computed by a monotone span program M, then
the dual access structure , * is computed by a monotone span program
M” of the same size. We will strengthen this result by proving that
such an M™ not only exists, but can be efficiently computed from M.

1 Introduction

Monotone span programs, introduced by Karchmer and Wigderson
in [KW93], are a model of computation, based on linear algebra, for
computing monotone functions. Since there is a natural one-to-one
correspondence between monotone functions {0,1}" — {0,1} and ac-
cess structures over the set P = {1,...,n}, every access structure ,
can be represented, we will say computed, by a monotone span pro-
gram M.

Every access structure , has a natural dual access structure ,
This concept was first defined in [STM91] and found various occurances
like e.g. in partial knowledge proofs [CDS94] or general-adversary
multi-party computation [CDM99].

The following question naturally arises. Given a monotone span

*

program M of reasonable size computing an access structure , , does
there exist a monotone span program M™* of reasonable size computing
the dual access structure , *, and, if yes, can it be efficiently computed?
The first part of the question has been answered in the confirmative
in [Gal95], we will show in the following that also the second part can
be answered by yes.



2 Definitions and Basic Properties

Let n be some positive integer and , a set of subsets of P = {1,...,n}.

Definition 1 , is called an access structure over P, if it is closed
under taking supersets, i.e. if A€, BDA=BE,.
The set , * = {A| A° &, } is called the dual access structure to , . !

Let , be an access structure over P = {1,...,n}. Further, let K be
some field, M a (d x e)-matrix over K, ¢ : {1,...,d} = {1,...,n} a
(surjective) function and € a vector in K°.

Definition 2 The quadrupel M = (K, M, ¢, €) is called a monotone
span program, MSP for short, with labeling ¢ and target vector e.
The j-th row of M s said to be labeled by k if p(j) = k.

The MSP M is said to compute the access structure , | if

A, = ecimM]

where the matriz M4 consists of the rows of M which are labeled by a
number in A. *

Ife € imMz holds for some A C P, then we say that M accepts A.
The size of M is d, the number of rows of M.

The claims of the following proposition are known and/or easy to
verify. We therefore omit the proof.

Proposition 2.1 Let M = (K, M, ¢,€) be a MSP computing an ac-
cess structure , . Then the following holds.

1. It is easy to transform M into a MSP, computing the same access
structure , , of equal size and with target vector (1,0,...,0).

2. For any ACP, e dimMt & 3 k: Myk=0,(k,e)=1.

3. Deleting a column of M (and the corresponding entry of €),
which can be expressed as a linear combination of the other columns,
does not change the access structure computed by the MSP.
Therefore, we can always assume that e < d.

Tt is easy to see that I'* indeed is an access structure.
2 Also for a vector v = (v1,...,vq) we let v4 be the vector consisting of the entries v;
with ¢(j) € A.



3 Existence

As already mentioned, the following result is proven in [G&195].

Theorem 1 Let M = (K, M, ¢, €) be a MSP computing some access
structure , . Then there exists a MSP M™ = (K, M~*, p,e*) of the
same size computing the dual access structure , *

Even though the proof given in [Gal95] is constructive, the con-
struction is not efficient.

4 Efficient Construction

We now state and prove the main result of this report.

Theorem 2 Let M = (K, M, ¢, €) be a MSP computing some access
structure , . Then a MSP M* = (K,M*, p,e") of the same size,
computing the dual access structure , *, can be efficiently computed.
Furthermore, M and M* satisfy MTM* = ee*7.

Proof: Let d and e be the number of rows and columns of the matrix
M (whose columns are wlog linear independent) and assume that the
target vector e is € = (1,0,...,0) € K°. Let v be asolution of the lin-
ear equation system M7'x = & and wy,..., W._q a basis for ker(M7).
Set M* = [vg, W1, ...,We_g] and &* = (1,0,...,0) € Ke~4+1,

Note that M* is a d x (d ©e + 1)-matrix which fulfills M7 M* = E
where E’s first column equals € and all other entries are zero, hence
E = ee*T. Further, every solution of MTx = ¢ is a linear combina-
tion of the columns of M™ in which the first column, vg, occurs exactly
once.

We will show now that the MSP M* = (K, M*, ¢, €*) computes , *.
Consider a set A € , . So there exists a vector A with A4c = 0 and
MTX = €. Therefore, XA must be of the form A = M*k with the first
entry of k being one. But since M.k = A4e =0 and (k,e") = 1, A°
is not accepted by M*.

Consider now a set A such that A is not accepted by M™. This means
that €* is not in the span of the rows of M. or, equivalent, there exists
a vector k with M.k = 0 and (k,e*) = 1. If we set a = M~k, then
ayge = 0 and hence MgaA = M7%Ta = MTM*k = Ek = . Therefore
Ae,.

Hence, A €, if and only if A° is not accepted by M™*. O
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