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Abstract

We consider monotone span programs as a tool for representing,
we will say computing, general access structures. It is known that if an
access structure � is computed by a monotone span programM, then
the dual access structure �� is computed by a monotone span program
M� of the same size. We will strengthen this result by proving that
such anM� not only exists, but can be e�ciently computed fromM.

1 Introduction

Monotone span programs, introduced by Karchmer and Wigderson
in [KW93], are a model of computation, based on linear algebra, for
computing monotone functions. Since there is a natural one-to-one
correspondence between monotone functions f0; 1gn ! f0; 1g and ac-
cess structures over the set P = f1; : : : ; ng, every access structure �
can be represented, we will say computed, by a monotone span pro-
gramM.

Every access structure � has a natural dual access structure ��.
This concept was �rst de�ned in [SJM91] and found various occurances
like e.g. in partial knowledge proofs [CDS94] or general-adversary
multi-party computation [CDM99].

The following question naturally arises. Given a monotone span
programM of reasonable size computing an access structure �, does
there exist a monotone span programM� of reasonable size computing
the dual access structure ��, and, if yes, can it be e�ciently computed?
The �rst part of the question has been answered in the con�rmative
in [G�al95], we will show in the following that also the second part can
be answered by yes.
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2 De�nitions and Basic Properties

Let n be some positive integer and � a set of subsets of P = f1; : : : ; ng.

De�nition 1 � is called an access structure over P, if it is closed
under taking supersets, i.e. if A 2 �; B � A) B 2 �.
The set �� = fA jAc 62 �g is called the dual access structure to �. 1

Let � be an access structure over P = f1; : : : ; ng. Further, let K be
some �eld, M a (d� e)-matrix over K, ' : f1; : : : ; dg ! f1; : : : ; ng a
(surjective) function and " a vector in Ke.

De�nition 2 The quadrupel M = (K;M;'; ") is called a monotone
span program, MSP for short, with labeling ' and target vector ".
The j-th row of M is said to be labeled by k if '(j) = k.
The MSP M is said to compute the access structure �, if

A 2 �() " 2 imMT

A

where the matrix MA consists of the rows of M which are labeled by a
number in A. 2

If " 2 imMT

A
holds for some A � P, then we say that M accepts A.

The size of M is d, the number of rows of M .

The claims of the following proposition are known and/or easy to
verify. We therefore omit the proof.

Proposition 2.1 Let M = (K;M;'; ") be a MSP computing an ac-
cess structure �. Then the following holds.

1. It is easy to transformM into a MSP, computing the same access
structure �, of equal size and with target vector (1; 0; : : : ; 0).

2. For any A � P, " 62 imMT

A
, 9 k :MAck = 0; hk; "i = 1.

3. Deleting a column of M (and the corresponding entry of "),
which can be expressed as a linear combination of the other columns,
does not change the access structure computed by the MSP.
Therefore, we can always assume that e � d.

1It is easy to see that �� indeed is an access structure.
2Also for a vector v = (v1; : : : ; vd) we let vA be the vector consisting of the entries vj

with '(j) 2 A.
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3 Existence

As already mentioned, the following result is proven in [G�al95].

Theorem 1 Let M = (K;M;'; ") be a MSP computing some access
structure �. Then there exists a MSP M� = (K;M�; '; "�) of the
same size computing the dual access structure ��.

Even though the proof given in [G�al95] is constructive, the con-
struction is not e�cient.

4 E�cient Construction

We now state and prove the main result of this report.

Theorem 2 Let M = (K;M;'; ") be a MSP computing some access
structure �. Then a MSP M� = (K;M�; '; "�) of the same size,
computing the dual access structure ��, can be e�ciently computed.
Furthermore, M and M� satisfy MTM� = ""

�T .

Proof: Let d and e be the number of rows and columns of the matrix
M (whose columns are wlog linear independent) and assume that the
target vector " is " = (1; 0; : : : ; 0) 2 Ke. Let v0 be a solution of the lin-
ear equation system MTx = " and w1; : : : ;we�d a basis for ker(MT ).
Set M� = [v0;w1; : : : ;we�d] and "

� = (1; 0; : : : ; 0) 2 Ke�d+1.
Note that M� is a d � (d � e + 1)-matrix which ful�lls MTM� = E

where E's �rst column equals " and all other entries are zero, hence
E = ""�

T . Further, every solution of MTx = " is a linear combina-
tion of the columns ofM� in which the �rst column, v0, occurs exactly
once.
We will show now that the MSP M� = (K;M�; '; "�) computes ��.
Consider a set A 2 �. So there exists a vector � with �Ac = 0 and
MT� = ". Therefore, � must be of the form � = M�k with the �rst
entry of k being one. But since M�

Ack = �Ac = 0 and hk; "�i = 1, Ac

is not accepted by M�.
Consider now a set A such that Ac is not accepted byM�. This means
that "� is not in the span of the rows ofM�

Ac or, equivalent, there exists
a vector k with M�

Ack = 0 and hk; "�i = 1. If we set a = M�k, then
aAc = 0 and hence MT

A
aA = MTa = MTM�k = Ek = ". Therefore

A 2 �.
Hence, A 2 � if and only if Ac is not accepted by M�. 2
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