
Unfair Coin Tossing
Grégory Demay Ueli Maurer

Department of Computer Science,
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Abstract—An ideal coin tossing resource for two parties out-
puts the same random bit to both parties. We introduce the
notion of an unfair coin tossing resource by relaxing both the
fairness and the non-influenceability guarantees that an ideal
coin toss would provide. The presence of this non-ideal behavior
is necessary in order to understand what coin tossing protocols
really achieve in the setting of two distrustful parties, since it
is known that such an ideal coin tossing resource cannot be
constructed whenever a majority of players is dishonest.

I. INTRODUCTION

A. Two Distrustful Parties and Coin Tossing

A two-party ideal coin tossing resource delivers the same
uniform random bit to both parties. They are in particular
guaranteed that the bit they received is fair, the first party
receives a bit if and only if the second party receives the same
bit, and not influenced, the bit a party receives is uniformly
random no matter what the other party does.

Ideal resources (such as an ideal coin toss) are generally
not available as a system in the physical world, but they
must be constructed by cryptographic means using available
resources (such as a communication channel) or assuming
other resources (such as bit commitment). Constructive cryp-
tography introduced in [1] (see also [2]), is a new approach
to cryptography in which cryptographic protocols are seen as
constructions of resources from other resources. The definition
of the term construction depends on the setting, i.e., on who
can potentially be dishonest and whether the security should
be information-theoretic or computational. A composition the-
orem of constructive cryptography guarantees that constructive
steps compose.

The goal of coin tossing protocols is of course to construct
such an ideal coin tossing resource. However, since [3], it is
known that such an attempt is doomed to fail in the setting
of two distrustful parties (more generally any setting where
a majority of players is dishonest). In this paper, we ask the
following simple question. Since coin tossing protocols cannot
construct an ideal coin tossing resource, what do they actually
construct?

B. Related Work

Blum in [4] gave the first coin tossing protocol under the
assumption that one-way functions exist. Later, Cleve showed
in [3] that any coin tossing protocol with a majority of
dishonest players would have a bias of Ω( 1

r ), where r is the
number of rounds of the protocol, because a malicious party
could, by prematurely aborting the protocol, bias the output

of the honest party. This issue has usually been tackled in
two different manners. Either by restricting the security notion
in allowing the honest parties not to output anything in case
of a premature abortion of the protocol [5]. Or, if one still
wants some security guarantees in case of abortion, to relax
the metric, i.e., the distinguishing advantage, between the ideal
coin tossing functionality and what the protocol achieves. The
latter approach was initiated by [6] and lead to the notion of
an optimally fair coin toss [7], [8].

C. Contributions and Outline

Unfortunately, security proofs in the second approach are
not composable because of the huge relaxation of the metric
(1/p(r) for some fixed polynomial p instead of negligible)
which might be critical for basic functionalities such as
coin tossing. Instead, we propose a very natural approach
which consists of making explicit the exact “ideal” resource
constructed by the aforementioned coin tossing protocols. Of
course, the constructed “ideal” resource will contain some
form of non-ideal behavior (fairness and non-influenceability
will have to be relaxed) and will be weaker than an ideal coin
toss. The goal is not to introduce weaker resources per se, but
simply to be able to state exactly what a protocol achieves.

Our results use the concept of secure construction defined
in [1], [2], which will be briefly restated in Section II-B.
For the sake of clarity, we introduce our unfair coin tossing
resource in two steps. A first simplified version is presented
in Section III and we show that Blum’s protocol [4] can
be seen as the construction of such a resource. Then, we
introduce the complete unfair coin tossing resource in Section
IV and show how having many of such resources can help in
constructing a less unfair resource by using Cleve’s majority
protocol argument [3].

II. PRELIMINARIES

A. Notation

We denote sets by calligraphic letters or capital greek letters
(e.g., X , Σ). Throughout this paper, we consider only discrete
random variables. A discrete random variable will be denoted
by an upper-case letter X , its range by the corresponding cal-
ligraphic letter X , and a realization of the random variable X
will be denoted by the corresponding lower-case letter x. Un-
less stated otherwise, X ∈R X denotes a random variable X
selected independently and uniformly at random in X . A tuple
of n random variables (X1, . . . , Xn) will be denoted by Xn.
For a binary vector Xn ∈ {0, 1}n, wH (Xn) will denote the
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Hamming weight of Xn, i.e., the number of ones in Xn. The
probability distribution of a random variable X will be denoted
as PX . For two probability distributions PX and QX , their
statistical distance is denoted by d (PX ,QX) and is defined
as follows: d (PX ,QX) := 1

2

∑
x∈X |PX (x)− QX (x)| . For

a binary random variable X , let b (X) ∈ [−1, 1] denote the
bias of the bit X , where

b (X) := 1− 2 · PX (1) .

Note that a bias of −1 (respectively, +1) corresponds to the
constant bit 1 (respectively, 0).

B. Constructive Cryptography

We use the concept of abstract systems [1], [2] to formulate
our results, and partly follow the concise exposition of [9]. At
the highest level of abstraction, a system is an object with
interfaces via which it interacts with other systems. Every
two systems can be composed by connecting one interface
of each system, and the resulting object is again a system.
Also, we assume that every two different systems are mutually
independent.

We consider three distinct types of systems: resources, con-
verters, and distinguishers. Resources are denoted by upper-
case boldface letters such as R and S. In this paper, we always
consider resources with two interfaces, the left interface will be
referred to as Alice’s, while the right interface will be referred
to as Bob’s. In our scenario, either Alice or Bob could be
dishonest, and the case where both are dishonest does not need
to be considered. Resources R and S could also be used in
parallel, and the resulting resource, denoted R‖S, is again a 2-
interface resource, where each of the interfaces of R‖S allows
access to the corresponding interface of both subsystems R
and S.

Converters are systems with one inside and one outside
interface, and are denoted by lower-case Greek letters, such
as α, β, σ. The set of all converters will be denoted by Σ. A
converter α can be attached to a resource R by connecting the
inside interface of α to one of the two interfaces of R. For
example, if α is attached to the left interface of R, then the
resulting resource is denoted by αR, and is again a 2-interface
system whose left interface is now the outside interface of α.
Similarly, attaching the converter β to the right interface of R
is denoted by Rβ.

A distinguisher D is a system that connects to all inter-
faces of a resource R and outputs at a separate interface
a single bit denoted B. The complete interaction between
D and R defines a random experiment, and the proba-
bility that D outputs 1 in this random experiment is de-
noted by PDR(B = 1). The distinguishing advantage of
D in distinguishing the system R from S is defined as
∆D(R,S) :=

∣∣PDR(B = 1)− PDS(B = 1)
∣∣. The set of all

distinguishers is denoted by D, and we define ∆D(R,S) :=
supD∈D∆D(R,S). Note that ∆D defines a pseudo-metric,
and for convenience we will use the following notation,
R ≈ε S :⇔ ∆D(R,S) ≤ ε, where ε ∈ [0, 1]. The next simple
lemma shows that deterministic distinguishers are optimal.

Lemma 1. Consider two arbitrary resources R and S. Let
D1, . . . ,Dn be n distinguishers, and define the distinguisher
D to be the distinguisher Di with probability PI(i), where I
is an independent random variable over {1, . . . , n}. Then,

∆D (R,S) ≤ max
i∈{1,...,n}

∆Di (R,S) .

A protocol, in our case a pair of converters, is used to con-
struct a specific ideal resource from available real resources,
where the meaning of “construct” is now made precise.

Definition 1. A two-party protocol π = (α, β) ∈ Σ2, where
only one party could be dishonest, securely constructs a
resource S from a resource R within ε, denoted R

(π,ε)−−−→ S,
if and only if

αRβ ≈ε S,

∃σ ∈ Σ : αR ≈ε Sσ,

∃τ ∈ Σ : Rβ ≈ε τS.

The converter σ in Definition 1 acts as a simulator, i.e., it
guarantees that what a malicious Bob could do in the real
world (when connected to αR), he could also do it in the ideal
world (when connected to Sσ). The role of the converter τ is
symmetric.

Note that as a specific instantiation of abstract cryptography,
[1, Th. 2] ensures us that our security definition is generally
composable. That is, a protocol which is secure according to
Definition 1 will remain secure under arbitrary sequential or
parallel composition.

C. Auxiliary Resources

Throughout this paper, we will use only two auxiliary
resources. The first one is a perfect communication channel
from Bob to Alice, denoted←. The second one is an ideal bit
commitment functionality denoted by COM. The resource
for bit commitment is represented in Figure 1 and can be
informally described as follows:

1) on input x ∈ {0, 1} at the left interface, output “com-
mitted” at the right interface;

2) on input “open” at the left interface, output x at the right
interface.

COM

x ∈ {0, 1} committed

open x

Figure 1. Ideal Bit Commitment Resource.

III. SINGLE UNFAIR COIN TOSSING RESOURCE

We are now ready to describe our (simplified) unfair coin
tossing resource. To do so, let a ∈ [0, 1] be a non-negative
bias. The resource for unfair coin tossing, denoted by UCTa,
is represented in Figure 2, and can be described as follows,

1) output a uniform bit C ∈R {0, 1} at the left interface,
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2) on input a bit b ∈ {0, 1} at the left interface, output the
bit C ′ at the right interface, where C ′ can be viewed as
a random function (of C and b) and is defined in (1).

C ′ :=

{
C if b = 0,
C ⊕N otherwise,

(1)

where N is an independent binary random variable such that
PN (1) = a.

Note that the resource UCTa is doubly unfair in the sense
that not only Alice sees what the value of the coin toss could be
before Bob, but depending on this value she could also try to
flip the bit output to him. Based on the definition of C ′ in (1),
it is readily verified that for a uniform bit C and an arbitrary
strategy to choose the flipping bit b, we have |b (C ′)| ≤ a.
Thus, a is a measure of how biased Bob’s output can be, and
Bob is guaranteed that the bit he received from UCTa has a
bias in the interval [−a, a].

UCTa

C ∈R {0, 1}

b ∈ {0, 1}

C′

Figure 2. (Simplified) Unfair Coin Tossing Resource.

A. Filtered Resources

Consider the simple converter Ψ showed in Figure 3 and
which can be described as follows. On input c ∈ {0, 1} at the
inside interface, Ψ outputs 0 at the inside interface and outputs
c at the outside interface. Note that the system ΨUCTa

corresponds exactly to an ideal coin tossing resource, where
the same uniform random bit is output to both interfaces. The
converter Ψ can be seen as a filter restricting Alice’s access
to the resource UCTa. The corresponding filtered resource,
denoted UCTa

Ψ, models the fact that Alice is guaranteed to
have access to ΨUCTa, but by behaving maliciously she
could potentially have a direct access to UCTa and then be
able to bias Bob’s output for example.

Ψ

c ∈ {0, 1}

0

c

Figure 3. Filter for the Unfair Coin Tossing Resource.

More generally, we could consider a filter for each interface
of a resource R, leading to the filtered resource Rφ, where
φ = (φl, φr) ∈ Σ2 and similarly for a filtered resource
Sψ , ψ = (ψl, ψr) ∈ Σ2. The construction notion stated in
Definition 1 generalizes to filtered resources as follows.

Definition 2. A two-party protocol π = (α, β) ∈ Σ2, where
only one party could be dishonest, securely constructs a
filtered resource Sψ from a filtered resource Rφ within ε,

denoted Rφ
(π,ε)−−−→ Sψ , if and only if

αφlRφrβ ≈ε ψlSψr,
∃σ ∈ Σ : αφlR ≈ε ψlSσ,
∃τ ∈ Σ : Rφrβ ≈ε τSψr.

B. Blum’s protocol

To justify the definition of our unfair coin tossing resource,
we show that Blum’s coin tossing protocol [4] constructs such
a resource. In the following, let πB = (αB, βB) ∈ Σ2 be
a pair of converters corresponding to Blum’s coin tossing
protocol [4]. That is, assuming that we have at our disposal
a commitment resource COM (described in Figure 1) and
a perfect communication channel ← from Bob to Alice, the
protocol (αB, βB) can be informally described as follows. The
converter βB waits for αB to commit to a random bit X before
sending its random bit Y . Once αB received the bit Y from the
communication channel, it opens its commitment revealing X
to βB. Then, both converters αB and βB output X⊕Y . In case
of a party aborting the protocol prematurely, the other party
outputs a uniform random bit. An honest execution of Blum’s
protocol is shown in Figure 4.

COM

←

X ∈R {0, 1} “committed”

Y ∈R {0, 1}Y

“open” X

αB βB

X ⊕ YX ⊕ Y

Figure 4. Blum’s Coin Tossing Protocol.

Theorem 1. Blum’s protocol perfectly constructs a filtered
1
2 -biased unfair coin tossing resource, i.e.,

(COM ‖ ←)
(πB,0)−−−−→ UCT

1
2

Ψ.

Proof: Recalling Definition 2, we have to show

αB(COM ‖ ←)βB ≈0 ΨUCT
1
2 , (2)

∃σB ∈ Σ : αB(COM ‖ ←) ≈0 ΨUCT
1
2σB, (3)

∃τB ∈ Σ : (COM ‖ ←)βB ≈0 τBUCT
1
2 . (4)

Note that (2) trivially holds, and (3) is readily verified by
considering the following simulator σB:

1) on input C ∈ {0, 1} at the inside interface, output
“committed” at the outside interface,

2) on input y ∈ {0, 1} at the outside interface, output C⊕y
at the outside interface.

In order to prove (4), consider the simulator τB described in
System 1. To simplify the notation, we shall denote by T
the system (COM ‖ ←)βB and by U the system τBUCT

1
2

in the remaining of the proof. Consider a distinguisher D
trying to distinguish T from U. Note that by Lemma 1, and
given the limited interaction that D can have when connected
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System 1 Simulator τB for Blum’s protocol
Input: C ∈ {0, 1} at the inside interface
Input: X ∈ {0, 1} at the outside interface

output Ŷ := X ⊕ C at the outside interface
on input: t at the outside interface

b← 0
if t 6= “open” then // Try to flip C

b← 1
output b at the inside interface.

end on input

to the left interface of either T or U, it is sufficient to
consider a distinguisher which sends a random value to the
commitment resource and then does not open its commitment.
When connected to T, the distinguisher D sees the random
variables X,Y, Z, where Z denotes the random bit output by
βB at the outside interface. By the specification of βB, those
three random variables X,Y, Z are independent and uniformly
distributed. When connected to U, the distinguisher D sees the
random variables X, Ŷ , C ′. Firstly, note that Ŷ = X⊕C is an
independent uniform bit when conditioned on X . Secondly, by
definition of τB and (1), we have in this random experiment
C ′ = C ⊕ N , where N is an independent uniform random
variable. Thus, the statistical distance between (X,Y, Z) and
(X, Ŷ , C ′) is 0 and so is the distinguishing advantage of the
distinguisher D.

Note that Blum’s coin tossing protocol cannot construct a
less biased coin tossing resource UCTa, where a < 1

2 . To see
this consider (4) and the system (COM‖ ←)βB. A malicious
Alice could choose to never open her commitment when the
output of the protocol would be 0, which would result in the
probability of Bob outputting 1 to be 3

4 , corresponding to a
bias of − 1

2 .

IV. MULTIPLE UNFAIR COIN TOSSING RESOURCES

Assume that we have at our disposal n unfair coin tossing
resources. Can we construct a less unfair coin tossing resource,
where the bias a malicious Alice could inflict to Bob’s output
would be smaller? In order to answer positively to this
question, we need to handle two subtleties in the definition
of our unfair coin tossing resource which we voluntarily left
out so far for the sake of simplicity. Namely, Blum’s coin
tossing protocol actually constructs a stronger resource (for
Bob) not in terms of bias, but in the following sense:

1) by choosing when to send his random bit Y to Alice
(via the communication channel ←), Bob decides when
Alice knows the outcome of the protocol, i.e., the coin
toss;

2) Bob knows when Alice aborted the protocol (assuming
that the systems considered are synchronous), hence
knows when Alice tried to “flip” his output.

Consequently, we consider from now onwards the following
(complete) unfair coin tossing resource CTa, represented in
Figure 5, and which can be described as follows,

1) on input “toss” at the right interface, output a uniform
random bit C ∈R {0, 1} at the left interface,

2) on input a bias b ∈ [−a, a] at the left interface, output
(b′, C ′) ∈ {0, 1}2 at the right interface, where the bit b′

is 1 if and only if b 6= 0, and C ′ is defined in (5).

C ′ :=

{
C if (C = 0 ∧ b ≥ 0) ∨ (C = 1 ∧ b ≤ 0),
C ⊕N otherwise,

(5)
where N is an independent binary random variable such that
PN (1) = |b|. The reason why we define C ′ differently than
in (1) is to be able to inflict a smaller bias than the maximum
to Bob’s output, while ensuring that b′ will be 1. Looking
ahead, this will be needed for the simulator τm in the proof
of Theorem 3.

CTa
tossC ∈R {0, 1}

b ∈ [−a, a] (b′, C′) ∈ {0, 1}2

Figure 5. (Complete) Unfair Coin Tossing Resource.

The following theorem is a trivial generalization of Theo-
rem 1, where the protocol considered is a slight modification
of Blum’s protocol in order to take into account the new
input/output behavior of CTa. We omit the proof.

Theorem 2. A modification of Blum’s protocol perfectly
constructs the 1

2 -biased unfair coin tossing resource depicted
in Figure 5, i.e.,

∃π ∈ Σ2 : (COM ‖ ←)
(π,0)−−−→ CT

1
2

Ψ.

The next theorem shows that having n unfair coin tossing
resources is useful to construct a less unfair resource in the
sense that the bias a malicious Alice could inflict to Bob’s
output can be reduced by a factor which is equivalent to 2√

2πn
.

Theorem 3. There exists a two party protocol π ∈ Σ2 such
that for an odd number n of unfair coin tossing resources,

CTa1
Ψ ‖ · · · ‖CTan

Ψ

(π,0)−−−→ CTa
Ψ,

where a := 2−(n−1)

(
n− 1
n−1

2

)
max

j∈{1,...,n}
aj .

Proof (sketch): The general idea of the protocol is
to ensure that Alice can flip at most one bit out of the n
bits that Bob would normally receive. To do so, consider
the protocol πm = (αm, βm) ∈ Σ2 together with the sys-
tem αm (ΨCTa1‖ · · · ‖ΨCTan)βm , and let maj denote the
boolean majority function1. After having first received the
message “toss” at its outside interface, the converter βm acts
as follows. During round i, i ∈ {1, . . . , n}, βm outputs the
message “toss” at its inside interface to CTai in order to
release the coin toss Ci to Alice. Upon receiving the pair

1maj(Xn) = 1⇔
∑n

i=1 Xi ≥ dn2 e, Xn ∈ {0, 1}n.
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(b′i, C
′
i) ∈ {0, 1}

2 from CTai , βm proceeds to the next round
if and only if b′i = 0. In case b′i = 1, indicating that a malicious
Alice did try to flip the ith coin toss, βm does not reveal the
remaining coin tosses from CTai+1 , . . . ,CTan to Alice and
instead selects the remaining bits C ′i+1, . . . , C

′
n independently

and uniformly at random. In both cases, βm finally outputs
the pair (b′, V ) at the outside interface, where b′ indicates
whether Alice cheated (formally it is the logical OR of the
b′i’s that βmreceived) and V corresponds to the majority of
C ′1, . . . , C

′
n. Similarly, αm outputs the majority of Cn and in

case a malicious Bob would not have revealed the ith coin toss
(assuming the systems considered are synchronous), selects
the remaining bits Ci, . . . , Cn independently and uniformly at
random. Recalling Definition 2, we have to show the existence
of two simulators (σm, τm) ∈ Σ2 such that 2

αm(ΨCTa1‖ · · · ‖ΨCTan)βm ≈0 ΨCTa, (6)
αm(ΨCTa1‖ · · · ‖ΨCTan) ≈0 ΨCTaσm, (7)

( CTa1‖ · · · ‖ CTan)βm ≈0 τmCTa. (8)

Note that (6) trivially holds because both converters αm and
βm apply the same deterministic function, the majority rule,
and the latter preserves the uniform distribution.

Equation (7) is verified by considering the following sim-
ulator σm. The simulator σm has to emulate n outside
sub-interfaces corresponding each to the right interface of
ΨCTa1 , . . . ,ΨCTan , respectively. It transmits the first “toss”
message received at its outside interface to CTa and receives
(0, C) at its inside interface. It then keeps selecting n in-
dependent uniform bits Ĉn ∈R {0, 1}n until their majority
corresponds to C. Finally, it outputs (0, Ĉi) to the outside ith

sub-interface where the “toss” message was input.
In order to prove (8), consider the simulator τm described

in System 2. Similarly to σm, the converter τm first finds
uniformly at random n bits Ĉ1, . . . , Ĉn such that their majority
corresponds to the bit C given by the ideal resource CTa

when the message “toss” was input. Then, τm sequentially
releases each Ĉi after having previously received a 0-bias input
by Alice. In case the bias input was not 0, the simulator τm
will bias Bob’s output accordingly. In order to keep shorter
notations, we will denote the system (CTa1‖ · · · ‖CTan) by
V during the remaining of the proof. By definition of βm,
a malicious Alice could bias at most 1 bit of V. Hence, by
Lemma 1 it is sufficient to consider the following distinguisher.
Let j ∈ {1, . . . , n} and consider the distinguisher Dj which
at the left interface of Vβm acts honestly up to the j − 1
step (always input a 0 bias), and then tries to influence CTaj

towards 1 by inputing bj = −aj to CTaj if Cj was 0. Recall
that by definition of CTai , all the bits C ′1, . . . , C

′
n output

to βm are independently and uniformly distributed, except
naturally for the random bit C ′j which takes on the value 1

with probability 1+aj
2 . Then, the probability that βm outputs

2For synchrony reasons we would need to modify the filter Ψ to output
the bit C at its outside interface only at a specified time and to add a filter
at Bob’s interface whose sole purpose would also be to delay the output of
CTa at the right interface. We omit such technicalities here.

System 2 Simulator τm for the majority protocol πm

Input: C ∈ {0, 1} at the inside interface
select Ĉn ∈R {0, 1}n until maj(Ĉn) = C
for i = 1 to n do

output Ĉi at the outside interface
on input: bi ∈ [−ai, ai] at the outside interface

if bi 6= 0 then
if (Ĉi = 0 ∧ b ≥ 0) ∨ (Ĉi = 1 ∧ b ≤ 0) then

b← −a if C = 1; b← a if C = 0
else

b← 2−(n−1)
(

n−1
(n−1)/2

)
bi

output b at the inside interface
halt

end on input
output 0 at the inside interface

1 in this random experiment, denoted PDjVβm (V = 1), is

PDjVβm (V = 1)

=
∑

cn∈{0,1}n,cj=0,
wH(cn)≥dn2 e

P
DjV
C′n (cn) +

∑
cn∈{0,1}n,cj=1,
wH(cn)≥dn2 e

P
DjV
C′n (cn)

= 2−(n−1)

 n∑
k=dn2 e

(
n− 1

k

)
1− aj

2
+

(
n− 1

k − 1

)
1 + aj

2


=

1

2
+ 2−n

(
n− 1
n−1

2

)
aj .

Thus, the value of the bias output by τm guarantees that the
statistical distance between the random variables involved in
both random experiments, DjVβm and DjτmCTa, is 0.
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