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Abstract—Common randomness is an important resource in
many areas such as game theory and cryptography. We dis-
cuss the general problem of common randomness amplification
between two distrustful parties connected by a communication
channel and sharing some initial randomness. In this setting, both
parties wish to agree on a common value distributed according
to a target distribution by using their initial amount of common
randomness and exchanging messages. Our results show that no
protocol which is secure in a composable sense can significantly
amplify the entropy initially shared by the parties.

I. INTRODUCTION
A. Randomness as a Resource

Playing any probabilistic game over the Internet requires
some randomness shared among the players. This common
randomness is necessary to emulate what could have had
happened if the players were physically present: shuffle cards,
throw a dice, etc. The common randomness used does not
need to be secret, but it is crucial for fairness that it cannot
be influenced by any party.

We see common randomness as a resource, which we model
as a system with an interface to every party in consideration.
Ideal resources (such as common randomness) are generally
not available as a system in the physical world, but they
must be constructed by cryptographic means using available
resources (such as a communication channel). Constructive
cryptography introduced in [1] (see also [2]), is a new ap-
proach to cryptography in which cryptographic protocols are
seen as constructions of resources from other resources. The
definition of the term construction depends on the setting,
i.e., on who can potentially be dishonest and whether the
security should be information-theoretic or computational. A
composition theorem of constructive cryptography guarantees
that constructive steps compose.

In this paper, we focus on the general problem of common
randomness amplification between two distrustful parties in
the information-theoretic case. That is, two distrustful parties
having access to an ideal communication channel and knowing
an initial common random value, wish to agree on a new
common random value which has higher entropy than what
they initially shared.

B. Related Work

Blum in [3] gave the first coin tossing protocol under
the assumption that one-way functions exist. Under the same
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assumption, Lindell presented in [4] a constant-round protocol
for securely tossing polynomially many coins in parallel. The
security of both protocols is stated in a stand-alone security
model (the so-called “malicious model” described in [5])
where only sequential composition is guaranteed. Maintaining
security under parallel composition requires a stricter notion
of security, such as in the Universal Composability (UC) [6]
or in the Abstract Cryptography [2] framework.

In [7], the authors studied the problem of extending given
coin tosses. For a composable security notion, they showed
that the possibility of such a task in the computational case
depends on the amount of initial given coin tosses. In the
information-theoretic case, they showed that there was no
efficient protocol which could extend a coin toss and be secure
in a composable sense.

C. Contributions and Outline

We introduce and study the general problem of common
randomness amplification for two distrustful parties in the
information-theoretic case. Our results use the concept of
secure construction defined in [1], [2], which will be briefly
restated in Section II-B. We define the resources used through-
out the paper in Section II-C. The security definition for
amplifying common randomness is stated in Section III. In
Section III-A, we show that if one wishes to securely construct
a source of common randomness, then communication has
limited utility. This observation will lay the ground for our
impossibility result in Section III-B.

II. PRELIMINARIES

A. Notation

We denote sets by calligraphic letters or capital greek letters
(e.g., X, X). For any integer n € N, let [n] := {1,...,n}.
Throughout this paper, we consider only discrete random
variables. A discrete random variable will be denoted by an
upper-case letter X, its range by the corresponding calligraphic
letter X', and a realization of the random variable X will be
denoted by the corresponding lower-case letter x. A tuple of n
random variables (X7, ..., X,) will be denoted by X™. The
probability distribution of a random variable X will be denoted
as P. For two probability distributions Py and Qy, their
statistical distance is denoted by d (P, Q) and is defined
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as follows

4Py, Qx) = 3 3 [Py () ~ Qy (0)].

reX

Auxiliary lemmas about the statistical distance are postponed
to the Appendix.

We will use standard information-theoretic notations such as
in [8]. A superscript will be added when the probability distri-
bution needs to be made explicit, for example IR(Y;Z | X)
will denote the mutual information between Y and Z given
X, where the random variables considered are distributed
according to the joint distribution Ry . The binary entropy
function will be denoted by h(-), where

h(z) := —zlogyx — (1 — x)logy (1 — z), Vx € [0,1].

The data-processing inequality, as well as Fano’s inequality
will be used, and we refer to [8, Th 2.8.1, Th 2.10.1] for their
statements. As a shorthand, we define the following function
F :]0,1] x N\ {0} — [0,00]; F(g,c) := h(e) + elogyc.
Observe that F(-,c) is a non-decreasing function over [0, 1],
for any ¢ € N\ {0}.

B. Constructive Cryptography

We use the concept of abstract systems [2], [1] to formulate
our results, and partly follow the concise exposition of [9]. At
the highest level of abstraction, a system is an object with
interfaces via which it interacts with other systems. Every
two systems can be composed by connecting one interface
of each system, and the resulting object is again a system.
Also, we assume that every two different systems are mutually
independent.

We consider three distinct types of systems: resources, con-
verters, and distinguishers. Resources are denoted by upper-
case boldface letters such as R and S. In this paper, we always
consider resources with two interfaces, the left interface will be
referred to as Alice’s, while the right interface will be referred
to as Bob’s. In our scenario, either Alice or Bob could be
dishonest, and the case where both are dishonest does not need
to be considered. Resources R and S could also be used in
parallel, and the resulting resource, denoted R||S, is again a 2-
interface resource, where each of the interfaces of R||S allows
access to the corresponding interface of both subsystems R
and S.

Converters are systems having one inside and one outside
interface, and are denoted by lower-case greek letters, such
as «, B,0. The set of all converters will be denoted by 3. A
converter o can be attached to a resource R by connecting the
inside interface of « to one of the two interfaces of R. For
example, if « is attached to the left interface of R, then the
resulting resource is denoted by aR, and is again a 2-interface
system whose left interface is now the outside interface of a.
Similarly, attaching the converter (3 to the right interface of R
is denoted by RS.

A distinguisher D is a system that connects to all inter-
faces of a resource R and outputs at a separate interface
a single bit denoted B. The complete interaction between
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D and R defines a random experiment, and the proba-
bility that D outputs 1 in this random experiment is de-
noted by PPR(B = 1). The distinguishing advantage of
D in distinguishing the system R from S is defined as
AP(R,S) := |[PPR(B =1) — PPS(B = 1)|. The set of all
distinguishers is denoted by D, and we define AP(R,S) :=
suppep AP (R, S). Note that AP defines a pseudo-metric,
and for convenience we will use the following notation,
R ~. S:& AP(R,S) < ¢, where ¢ € [0,1].

A protocol, in our case a pair of converters, is used to con-
struct a specific ideal resource from available real resources,
where the meaning of “construct” is now made precise.

Definition 1. A two-party protocol 7 = (a, 3) € %2, where

only one party could be dishonest, securely constructs a

resource S from a resource R within ¢, denoted R M S,

if and only if

aRfB ~. S, (D
doe¥: aR =, So, 2)
dre¥: R ~.78S. 3)

Note that as a specific instantiation of abstract cryptography,
[2, Th. 2] ensures us that our security definition is generally
composable. That is, a protocol which is secure according to
Definition 1 will remain secure under arbitrary sequential or
parallel composition.

C. Resources Considered

We will consider two different resources of randomness: a
symmetric source of randomness depicted in Figure 1, and a
correlated source of randomness depicted in Figure 2.

Definition 2. A symmetric source of randomness for the
distribution Py, denoted by [P y],, is a 2-interface resource
which outputs at both left and right interfaces the same random
variable X distributed according to P y.

XX

Figure 1: The symmetric source of randomness [P y],.

Definition 3. A correlated source of randomness for the joint
distribution Py ,, denoted by [Py ,], is a 2-interface resource
which outputs Y at the left interface and Z at the right
interface, where the pair (Y,Z) is distributed according to

Py 4.

Y Z

[Py z]
Figure 2: The correlated source of randomness [Py, ].
Note that the resources defined above are different from

usual common randomness functionalities found in the litera-
ture, such as the coin-tossing functionality defined in [7], or
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the common random string functionality defined in [6]. Simply
put, these functionalities add more constraints for the parties
as to when or how they should receive their output from the
resource.

The following lemma gives a trivial lower bound on the
distinguishing advantage between a symmetric and a correlated
source of randomness.

Lemma 1. For any distributions Py, and Py,
AP ([Py 4], [Pwly) = P (Y # 2).

Proof: Consider the distinguisher D which outputs 1 if
and only if the two random variables received are not equal.
Then,

AP (Py gl [Pwly) = AP ([Pyg], [Pwly) =P (Y # 2).

| ]
We will also make use of a perfect communication channel,
which simply forwards messages.

Definition 4. A bi-directional communication channel, de-
noted <>, is a 2-interface resource which forwards every
input at the left (respectively, right) interface to the right
(respectively, left) interface.

III. COMMON RANDOMNESS AMPLIFICATION

We are interested in the 2-party problem, called common
randomness amplification, consisting of agreeing on a com-
mon random W distributed according to Py, given solely an
ideal communication channel and some common random X
distributed according to P y. The term amplification refers to
the fact that we require the Shannon entropy H (W) to be
greater than H (X), the entropy initially shared among both
parties.

Definition 5. A two-party protocol 7 = (v, 3) € £2 is said
to securely amplify common randomness within ¢ if

(& 1Pxls) =2 Py, and H (W) > H (X).

A. Constructing a Symmetric Source of Randomness

For the remainder of the paper, let 7 = (o, 3) € X2 be a

(7,¢)

protocol such that (<> || [Py],) —— [Py], for some € €

[0, 1]. Definition 1 implies that

a (< [[[Pxly) B =< [Pwlys “4)
JoeX: a(+ | [Pxly) = [Pwlyo, 5)
IreX: (& |[Pxly) B = T[Pwl,- (6)

The system o (<+ || [P x],) B is depicted in Figure 3. With-
out loss of generality, we will assume the protocol («, 3) to
send an even number of messages M", M; € M, where
messages with odd indices are sent by Alice, and messages
with even indices are sent by Bob. The output of the protocol
(a, 8) will be denoted by (Y, Z), where both random variables
are assumed to be over V. The joint distribution defined by
this random experiment is denoted by Ry y/ny -

We now state some implications from the security definition.
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Figure 3: The protocol («, 3) receives the same random X
and outputs (Y, Z) after having exchanged n messages M™.
The random variables involved in this random experiment are
distributed according to Ry /ny 4.

a) Implications of the correctness condition (4): Note
that (4) and Lemma 1 imply the probability that Y is
different from Z in the random experiment defined by
Rx army 7 1s upper-bounded by ¢ , which with Fano’s inequal-
ity gives HR (Y | Z) < F(e,|W|). Moreover, the distribution
Rxamyz is such that Y and Z are conditionally independent
given (X, M™). Applying the data-processing inequality gives
IR(Y; XM™) > IR(Y; Z), and thus

HR (Y [XM") <HR(Y | 2) < F(e,[W). (D

b) Implications of the simulatability condition (5): We
now consider a specific distinguisher trying to distinguish
a (¢ || [Px],) from [Py,], o as follows. It emulates inter-
nally! 3 at the right interface of the connected system. Such
a distinguisher is shown in Figure 4. When connected to
a (< || [Px]y) (see Figure 4a), such a distinguisher would
see the random variables X, M"Y, Z distributed according
to Ry 5/ny 3 Whereas when connected to [Py;], o (see Figure
4b) such a distinguisher would see the random variables
X, M™ W, Z distributed according to some different joint
distribution, say Sx psnyz- The maximum distinguishing ad-
vantage of such a distinguisher is d(Ry p;ny 75 S x prnwz)» and
(5) ensures that

d(Rx prnyz, Sxmmwz) <€ ¥

Note that in the random experiment defined by the joint
distribution S y 5,y z» messages with even indices are actually
sent by the (emulated) protocol 3, and the random variable Z
is also computed and output by /3. Thus,

Saixari-iw = Ragxari-1, for even i € [n]; ©)
SZ|XM”W = RZ|XM”'
Consequently the distribution Sy, is such that W and
M, are conditionally independent given (X, M*~1), for an
even 7, or in other words,

IS(W;M; | XM~ 1) =0, foreveni € [n].  (10)

Formally this assumes some closure properties on the distinguisher class
D stated in [2, Def. 16].
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(a) Real World. The distinguisher D emulates internally the
protocol 3 at the right interface of « (¢ || [Px],). The distin-
guisher D sees the random variables X, M"Y, Z distributed
according to Rx rny z-

Figure 4: A distinguisher could emulate internally the protocol 3 in order to distinguish a (<+ || [P x],) from [Py]

c) Implications of the simulatability condition (6): Sim-
ilarly, we consider a specific distinguisher which emulates
internally the protocol « at the left interface of the connected
system in order to distinguish (< || [P],) 8 from 7 [Py, ],.
This setting is completely symmetric to the one in the pre-
vious paragraph, except when connected to 7 [Py, ], such a
distinguisher would see the random variables X, M™ Y, W
distributed according to some joint distribution denoted by
Txymyw- Thus,

d(TxpmywsRxamyz) <& (11)
TM,‘XMi—IW:RA{,lxMi—l, for odd 7 € [n],

' ‘ (12)
TY\XJW”W = RY\XM”?
IT(W;M; | XM*™1) =0, for odd i € [n]. (13)

B. Impossibility of Common Randomness Amplification

We now prove that there is no information-theoretically
secure protocol which amplifies common randomness. The
main idea is that any secure construction of the type

(< 1 [Px]y) (), [Py ], requires H (W) to be bounded by

H (X) (plus some function of ¢). For the sake of clarity, we
first proceed to the perfect case (¢ = 0) in Theorem 1 and
then deal with the general case in Theorem 2.

Theorem 1. There is no protocol which perfectly amplifies
common randomness, i.e.,

(m,0)
(= [[[Pxly) == [Pwl, = H (W) < H(X).
Proof: Equations (8) and (11) imply for € = 0 that

Rxuvmyz =Sxumwz = Txumyw-
Thus, any information-theoretic measure involving these dis-
tributions are the same, and (7) implies HR (Y | XM™) = 0
for ¢ = 0. Since H (W) = HR (Y), we have
H (W) < H* (X) + H* (Y | X)
=H(X)+I}Y;M" | X)
=H(X)+ Y IS(W;M; | XM

i€[n]

38

D

(b) Ideal World. The distinguisher D emulates internally the
protocol S at the right interface of [Py, o. The distinguisher D
sees the random variables X, M"™ W, Z distributed according

to SX]\I"WZ'

0.

The proof is finished upon noticing that (10) and (13),
together with the fact that Sy y/nyz = T xamy > iMmply

IS(W; M; | XMty =0, forall i € [n].
|
Theorem 2. There is no statistically secure protocol with n
messages which significantly amplifies common randomness,
i.e., for any € € |0, m ,

(m,¢)

(= [[Pxly) —= [Pwl, = H (W) < H (X) + f(e),
where f(g) := 3(h (2e)+2elogy W|)+h (2(n+ 1)e)+2(n+
1)elogy (W

Proof: Consider a mixture M of distributions between T
and S defined as follows

Mxarmyw =
Txw: H Tﬂfi\XM’—lw' H SMilXM"'—lw'TY\XM”W'
i€[n], i€[n],
i odd 7 even

In the following, M (Y # W) denotes the probability that
Y is different from W in the random experiment defined by
the joint distribution M 5 3 rnyyp-

d) Upper-bound of M(Y # W): Note that (4), (5), and
(6) imply that
ot [Pyly e a (< [[[Px]y) B = [Pwls s
and, consequently, d (Tyyy, Pyyy) < 2e.

The triangle inequality, (8), and (11) imply that
d(Txpmyws Sxmmwz) < 2¢. We now show that the
distribution My, ny-yy 18 statistically close t0 T x5 ny 1y @S
follows. We can see the distribution My ;3,ny-y @S @ mixture
between the distributions T y y;ny -y and Sy, involving
n + 1 random variables (X, W, M;), Mo, ..., M,,Y. Then
applying Lemma A.3 and using the fact that n is assumed to
be even, we have

d(Txpmyw>Mxarmyw) <n-d(Txpmyw, Sxpmwz)
< 2ne.
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Thus, the last equation and d (T, Pyyyy) < 2¢ give us

M (Y # W) = d(MYWa PWW)
<dMyw, Tyw) +d(Tyw, Pww)

< dMxpmyws Txmnyw) +d(Tyw, Pyw)
<2(n+1)e, (14)

where (a) follows from Lemma A.1.
e) Upper-bound of HM (W | X): By construction of the
distribution M and (10), (13) , we have
MW M; | XM*1) =0, forall i€ [n],
which implies that I™(W; M™ | X) = 0. Thus,
HM (W | X)=HM (W | XM™)
<HM (WY | XM™)
=HM (Y | XM"™) + HM (W | XM"Y)
<HM(Y | XM™) + HM (W |Y), (5)
where the last inequality follows from the fact that condition-

ing reduces entropy.
We now upper bound HM (Y | XM™). First, note that

MY|XM"W = TY‘XM,LW RY‘XJV », Which implies
HY (Y | X =2, M"=m") = HR(Y | X =2, M" = m").
Second, the distribution M is such that M Mr|x = R M| X and

Lemma A.2 implies d (Ry 3;n, Mxm) = d(Rx, My ). Since
My =Ty, by Lemma A.2 and (11), we have
d(Mx,Rx) <d(Txaymyw:Rxamyz) <& (16)

Thus, HM (Y | XM™) and HR (Y | XM™) are the average
of the same function under two probability distributions which
are e-close. This implies using the triangle inequality,

|HM (Y | XM™) — HR (Y | XM™)| < 2elog, WV,
which combined with (7) give,
HM (Y | XM™) < F(e,|W)|) + 2¢log, | W) .

Looking back at (15), we also need to upper bound
HM (W | Y), which can be done using Fano’s inequality and
(14) to obtain
HM (W | X) < F(e,|W|) + 2elogy W] + F(2(n + 1), |[W))

< 2F (2, W) + F(2(n + 1), V), (17)
where we used the fact that F'(-,|W)|) is a non-decreasing
function on [0, 1], and by assumption 2(n + 1)e < 3.

f) Upper-bound of H (W): Note that (16) and Theorem
A.1 imply that

HY(X) < HY (X) + F(22, W)

The last equation and (17) finish the proof as follows,

HY (W) < H" (X) + H" (W | X)
< HR(X) +3F(2¢, W) + F(2(n + 1)e, W)

39

APPENDIX

Theorem A.l. [8, Th. 17.3.3] Let X and Y be two discrete
random variables over X distributed according to Py and
Py, respectively, and such that d(P y,P,) < %. Then,

2d(PX’ PY)
X
Lemma A.1. For any joint probability distributions Py and

|H (X) — H (Y)] < =2d(Px, Py)log,

Qxy;
d(Pxy;Qxy) > max{d(Px,Qx);d(Py,Qy)}.

Lemma A.2. For any distribution Py and Qy, and any
conditional distribution PY| X

d(Px,Qx) =d(Px - Py x, Qx - Py|x)-
Lemma A.3. Let Py, and Q. be two joint distributions.
Consider a joint distribution M .., which is a mixture between
Pxn and Qx.,

My, xi-1 = Px, xi-1, for odd i € [n],
My, xi-1 = Qx,|xi-1, for even i € [n].

Then, n
d(Pyn,Myn) <2 bJ d(Pyn, Qyn).

Proof: Due to space constraints, we only provide a proof
sketch. When 7 is odd, Lemma A.2 implies d (P y., My, ) =
d(PX,,L,17 Mxn,l). When n is even, one can show us-
ing the triangle inequality, Lemmas A.2 and A.l, that
d(Pyn,Myn) <2d(Pyn, Qyn) +d(Pyn-1, Myns).

Note that My, can be rewritten as follows, My i1 =
f@) - Py xior + (1= f(9) - Qx,xi-1, Where i € [n],
and f(i) := i (mod 2). Thus, using the convexity of the
statistical distance d (Pyn,Myxn) < d(Pyn_1,My._1) +
2(1— f(n))d(Pxn,Qxn). Since d (Py ,My ) = 0, the final
result is obtained by induction and Lemma A.1. [ ]
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