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Abstract—We consider the Binary Erasure Source (BES)
introduced by Martinian and Yedidia. Based on the tech-
nique introduced by Martinian and Wainwright, we upper
bound the rate-distortion performance of the check regular
Poisson LDGM ensemble and the compound LDGM-LDPC
ensemble for the BES. We also show that there exist
compound LDGM-LDPC codes, with degrees independent
of the block-length, which can achieve any given point on
the Shannon rate-distortion curve of the BES.

I. INTRODUCTION

Following the remarkable success of sparse graph
codes for the channel coding problem, many researchers
have explored their capabilities for various source coding
problems. One of the first contributions in this direction
was made in [1], where Martinian and Yedidia introduced
the Binary Erasure Source (BES). They showed that
Low-Density Generator Matrix (LDGM) codes, which
are duals of capacity achieving Low-Density Parity-
Check (LDPC) codes for the Binary Erasure Channel
(BEC), are optimal zero-distortion compression codes for
the BES.

The first lower bound for lossy compression of a
Binary Symmetric Source (BSS) using LDGM ensembles
was derived by Dimakis, Wainwright, and Ramchandran
in [2]. In contrast, Kudekar and Urbanke derived lower
bounds on the rate-distortion performance of individual
LDGM codes for the BSS [3]. Based on the second mo-
ment method, Martinian and Wainwright further derived
upper bounds on the lossy compression performance of
Check Regular Poisson (CRP) LDGM ensembles for the
BSS [4–6]. They also proposed a compound LDGM-
LDPC ensemble based on CRP LDGM ensembles and
regular LDPC ensembles [4]. In particular, they showed
that a randomly chosen code from the compound en-
semble under optimal decoding achieves Shannon’s rate-
distortion bound with high probability, and with degrees
remaining independent of the block-length [7].

In an earlier paper, lower bounds on the rate distortion
performance of LDGM codes were derived for the BES
[8]. In the present paper we focus on obtaining upper
bounds on the rate distortion performance of LDGM
codes for the BES, with the further objective of gaining a
deeper insight into the behaviour of sparse-graph codes
used as lossy compressors. Based on the technique in
[4–6], we derive upper bounds on the rate-distortion
performance for the BES using codes from the CRP
LDGM ensemble and from the compound LDGM-LDPC
ensemble. We also prove the optimality of the compound
construction for the BES.

The remainder of the paper is organized as follows.
In Section II, we formally state the problem and pro-
vide the necessary background results and definitions.
In Section III, we derive upper bounds on the rate-
distortion function for the CRP LDGM ensemble and
the compound LDGM-LDPC ensemble. The optimality
of the compound LDGM-LDPC ensemble is proven in
Section IV, and in Section V we conclude with some
discussion.

II. DEFINITIONS AND NOTATIONS

Consider the BES which was introduced in [1]. Its
source alphabet is A = {0, 1, ?}, where ? is the erasure
symbol. A BES whose source symbol can take on the
value {?} with probability ε or the values {0, 1} with
equal probabilities is denoted by BES(ε). The source
encoding of a BES corresponds to encoding it with a
binary alphabet {0, 1}. The erasure symbol ? can be
encoded to either 0 or 1 without incurring any distortion
penalty. Thus the distortion function d(x, y) between x
and y, where x ∈ A and y ∈ {0, 1}, is zero if x = ? or
x = y. Otherwise, it is equal to one. The BES models
the situation where some of the source symbols are not
relevant or corrupted by noise. These symbols correspond
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to erasures and can be encoded by a zero or a one without
incurring any penalty.

For the BES(ε), the Shannon rate-distortion function
is described as Rsh

ε (D) = (1 − ε) [1− h (D/(1− ε))]
if D < (1 − ε)/2 and zero otherwise, where h(x) ,
−x log2(x)− (1−x) log2(1−x), x ∈ [0, 1] is the binary
entropy function. We denote the natural logarithm by log
and logarithm to base two by log2.

We consider binary LDGM codes, which are binary
linear block codes defined by a sparse generator ma-
trix. A code of rate R ≤ m

n maps binary sequences
w ∈ {0, 1}m into a codeword c ∈ {0, 1}n, m ≤ n.
More precisely, let L (G) be a binary LDGM code of rate
0 ≤ R ≤ 1 and block-length n, generated by a sparse
binary generator matrix G ∈ {0, 1}m×n

L (G) =
{
c ∈ {0, 1}n : ∃w ∈ {0, 1}nR s.t. c = wG

}
.

We consider the Check Regular Poisson (CRP) LDGM
ensemble denoted by LP (dc,m, n). A randomly chosen
code L (G) belonging to LP (dc,m, n) is generated by
the following procedure. Each check node is connected to
dc information bits chosen uniformly at random and with
replacement. The degree distribution of the information
bits tends to a Poisson distribution as the block-length n
increases.

We now define the LDGM-LDPC compound construc-
tion. A LDGM-LDPC code is denoted by C(G,H),
with the LDGM matrix G ∈ {0, 1}m×n and the LDPC
matrix H ∈ {0, 1}k×m, where n is the block-length of
the overall code and m the length of the information
sequence. Then,

C(G,H) = {c ∈ {0, 1}n : ∃w ∈ {0, 1}m s.t.

c = wG and wHT = 0
}
.

We denote the rate of the generator matrix G by RG and
the rate of the parity-check matrix H by RH , then the
rate of the compound LDGM-LDPC code C(G,H) is
given by R = RGRH . An example of a LDGM-LDPC
compound code is given in Figure 1.

We denote the compound LDGM-LDPC ensem-
ble by C(dc, dv, d

′
c,m, n). A random code C(G,H)

from C(dc, dv, d
′
c,m, n) is generated by choosing both

uniformly at random, the generator matrix G from
LP (dc,m, n), and the parity-check matrix H from the
standard (dv, d

′
c)-regular LDPC ensemble [9].

A. Source Coding

We consider rate distortion encoding of a BES using
the CRP LDGM ensemble and the compound LDGM-
LDPC ensemble. For a given code C, let N be the
total number of codewords. We index the codewords as

n

m

dcG

H

k d′c

dv

Fig. 1: Compound LDGM-LDPC code. The top layer is a
(n,m) LDGM code whereas the bottom part is a (m, k)
LDPC code. The top layer of nodes are the check bits
of the LDGM code, the middle layer are the information
bits of the LDGM code, and the bottom layer are the
parity-check nodes.

{C1, · · · , CN}, where C1 is the codeword generated by
the all-zero information word.

For a source word S ∈ {0, 1, ?}n, let Xi(C, S,D) be
the indicator function which evaluates to one if Ci is
within distortion Dn from S. We define,

Z(C, S,D) =

N∑

i=1

Xi(C, S,D). (1)

For the sake of notational simplicity, we drop the argu-
ments and write Xi and Z. We want to derive a lower
bound on the probability P{Z > 0}. Let Sb be the set of
source sequences with b erasures and let SE be the set of
source sequences whose erasure positions are elements
of the set E , E ⊂ {1, . . . , n}. We write

P{Z > 0} =

n∑

b=0

∑

E:|E|=b
P{S ∈ SE}P{Z > 0|S ∈ SE},

(a)
=

n∑

b=0

(
n

b

)
εb(1− ε)n−bP{Z > 0|S ∈ SB},

(2)

where B = {1, . . . , b}. (a) follows because of the
i.i.d. behavior of BES. We are interested in finding a
lower bound on the probability P{Z > 0|S ∈ SB}.
Note that we are only interested in the growth rate of
P{Z > 0} due to the following concentration result in
[7].

Lemma II.1. Assume that for a given distortion D and
a given ensemble of codes, we have

lim
n→∞

1

n
log2 P{Z (C, S,D) > 0} ≥ 0. (3)

Then, ∀θ > 0, there exists a code in the ensemble such
that for sufficiently large block-length n the average
distortion is less than than D + θ.
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B. Second Moment Method

We derive a lower bound on P{Z > 0|S ∈ SB} by
the second moment method,

P{Z > 0|S ∈ SB} ≥
E (Z|S ∈ SB)

2

E (Z2|S ∈ SB)
. (4)

In the next lemma, we compute the first moment
E (Z|S ∈ SB) for any linear code. We also show that if
nD ≥ n−b

2 , then the growth rate of P{Z > 0|S ∈ SB}
is zero.

Lemma II.2. Consider any linear block code with rate
R and block length n. The first moment E (Z|S ∈ SB)
is given by

E (Z|S ∈ SB) ={
o
(
2n−b

)
2nR−n(1−β)(1−h(

D
1−β )) if nD ≤ n−b

2 ,
o
(
2n−b

)
2nR otherwise.

where β = b
n . If D ≥ 1−β

2 , then

lim
n→∞

log2 (P{Z > 0|S ∈ SB})
n

= 0.

Proof: By using the definition of Z in terms of
random variables Xi given in (1), we obtain

E (Z|S ∈ SB) =

N∑

i=1

E (Xi|S ∈ SB) ,

= 2nRP{X1 = 1|S ∈ SB}.

We obtain the expression for E (Z|S ∈ SB) by noting
that

P{X1 = 1|S ∈ SB} =

nD∑

j=0

(
n− b
j

)
1

2n−b

and the maximum of the summation term is attained at
j = nD if nD ≤ n−b

2 , otherwise it is attained at n−b
2 .

Thus, when D ≥ 1−β
2 , we obtain

lim
n→∞

log2 (P{X1 > 0|S ∈ SB})
n

=

(1− β)

(
h

(
1

2

)
− 1

)
= 0.

The claim of the lemma follows by noting that
P{X1 > 0|S ∈ SB} ≤ P{Z > 0|S ∈ SB} and
probability of any event is upper bounded by one.

Remark: From the lemma above, we need to lower
bound P{Z > 0|S ∈ SB} only for β < 1 − 2D. In
addition, the rate distortion performance analysis is non-
trivial only for D < (1− ε)/2.

In the next lemma, we compute the second moment of
Z in terms of its expectation. The proof of this lemma
is identical to that of Lemma 3 in [5].

Lemma II.3. For any linear code, the second moment
satisfies the relation

E
(
Z2|S ∈ SB

)
= E (Z|S ∈ SB) + E (Z|S ∈ SB)×

∑

j 6=1

P{Xj = 1|X1 = 1, S ∈ SB}


 . (5)

In the next section, we derive upper bounds on the
rate distortion performance of CRP LDGM ensembles
and LDGM-LDPC ensembles for the BES.

III. UPPER BOUNDS ON THE RATE DISTORTION
PERFORMANCE

Consider a randomly chosen code L (G) ∈
LP (dc,m, n). Let C(ν) be a codeword which is gen-
erated by an information word of weight νm, ν ∈ [0, 1].
Then by the definition of the CRP LDGM ensemble
each component of C(ν) is Bernoulli distributed with
parameter δ(ν, dc) , 1

2

[
1− (1− 2ν)

dc
]
. Note that to

simplify notation, we sometimes drop the arguments of
δ(ν, dc) and denote it by δ. Define

Q(ν, β) , P{d (C(ν), S) ≤
nD | d (C1, S) ≤ nD,S ∈ SB}. (6)

The following lemma bounds the exponential behavior
of Q(ν, β).

Lemma III.1. Let β < 1− 2D. For a randomly chosen
code from the CRP LDGM ensemble LP (dc,m, n) or the
compound LDGM-LDPC ensemble C (dc, dv, d

′
c,m, n),

the exponential growth rate of the conditional probability
defined in (6) is upper bounded as

1

n
log2Q(ν, β) ≤ F (δ(ν, dc), β,D) + o(1), (7)

where

F (γ, β,D) = inf
λ<0

max
τ∈[0,D]

G(τ, λ, γ, β,D),

= max
τ∈[0,D]

G(τ, λ?, γ, β,D).

In order to define G(τ, λ, γ, β,D), consider
f1(γ, λ) , (1− γ)eλ + γ. Then,

G(τ, λ, γ, β,D) =

(1− β)

[
h

(
τ

1− β

)
− h

(
D

1− β

)]
+ τ log2 (f1(γ, λ))

+ (1− β − τ) log2 (f1(1− γ, λ))− λD

log 2
.
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The definition of λ∗ is based on the following quadratic
equation

x2(1− β −D)δ(1− δ) + x
(
τ(1− 2δ) + δ2(1− β)

)

− x
(
D
(
δ2 + (1− δ)2

))
−Dδ(1− δ) = 0. (8)

Let ρ∗ be the only positive solution of (8). Then λ∗ =
min (0, log (ρ∗)).

Proof: This proof is an extension of the proof for
Lemma 5 in [7]. Since C1 is the all-zero codeword, the
condition d (C1, S) ≤ nD is equivalent to wH(S) ≤
nD, where wH(S) denotes the Hamming weight of S
(Hamming weight of an erasure is zero). Let T be the
random variable corresponding to the Hamming weight
of S, i.e., T = wH(S), knowing that S lies in SB. Then

P{T = t} =

(
n−b
t

)
∑nD
i=0

(
n−b
i

) .

Let Y be the random variable corresponding to the
Hamming distance between C(ν) and S, when S ∈ SB.
Then

Y =





T∑

j=1

Uj +

n−b−T∑

j=1

Vj , if 1 ≤ T ≤ nD

n−b−T∑

j=1

Vj , if T = 0,

where Uj and Vj are independent Bernoulli random
variables with parameters 1 − δ(ν, dc) and δ(ν, dc) re-
spectively. Then,

Q(ν, β) = P{Y ≤ nD}. (9)

To bound this probability we will use the Chernoff bound
in the following manner
1

n
log2 P{Y ≤ nD} ≤ inf

λ<0

(
1

n
log2 MY (λ)− λD

log 2

)
,

(10)
where MY (λ) denotes the moment generating function
of the random variable Y . Then we have

MU (λ) = (1− δ)eλ + δ, MV (λ) = δeλ + 1− δ,

MY (λ) =

nD∑

t=0

P{T = t} [MU (λ)]
t
[MV (λ)]

n−b−t
.

Let τ = t/n. Using Stirling’s formula, we obtain

1

n
log2 MY (λ) =

1

n
log2

{
Dn∑

t=0

2n(1−β)(h(
τ

1−β )−h( D
1−β ))

×2n(τ log2(MU (λ))+(1−β−τ) log2(MV (λ)))
}

+ o(1).

Using this, (9), and (10) we have

1

n
log2Q(ν,D) ≤ inf

λ<0
max
τ∈[0,D]

G(τ, β, λ, δ,D)+o(1).

Using similar arguments as in the proof of Lemma
5 of [7], it can be shown that the order of infimum
with respect to λ and maximum with respect to τ
can be interchanged. Equating the partial derivative of
G(τ, β, λ, δ,D) with respect to λ to zero results in
the quadratic equation (8) in terms of eλ. Solving
the quadratic equation gives the desired expression for
F (γ, β,D). This proves the lemma.

Note that in the previous lemma we derived an upper
bound on the growth rate of Q(ν, β) for any fraction β of
erasures such that β < 1−2D. However, from now on we
will only consider β = ε. This is because asymptotically
the probability of having a source sequence with fraction
of erasures equal to ε is almost equal to one. In the
following lemma we derive an upper bound on the rate
distortion performance of the CRP LDGM ensemble.

Lemma III.2. Consider the CRP LDGM ensemble
LP (dc,m, n) with rate R ≤ m

n . The rate distortion
performance of LP (dc,m, n) for the BES(ε) is upper
bounded by

R ≥ max
ν∈[0,1]

Rsh
ε (D) + F (δ (ν, dc) , ε,D)

1− h(ν)
,

where F (δ (ν, dc) , ε,D) is defined in Lemma III.1.

Proof: Combining (4) and (5) we obtain

1

n
log2 (P{Z > 0|S ∈ SB}) ≥

1

n
log2E (Z|S ∈ SB)−

1

n
log2


1 +

∑

j 6=1

P{Xj = 1|X1 = 1, S ∈ SB}


 (11)

Assuming β ≤ 1 − 2D, we can upper bound the last
term in (11) by using (7).

1

n
log2


1 +

∑

j 6=1

P{Xj = 1|X1 = 1, S ∈ SB}




=
1

n
log2



∑

ν∈[0,1]:
νm∈N

(
m

νm

)
Q (ν, β)




≤ max
ν∈[0,1]

{Rh(ν) + F (δ(ν, dc), β,D)} (12)

Combining the last two equations and (2), and consid-
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ering only the typical value β = ε we have

1

n
log2 P{Z > 0} ≥ R− (1− ε)

(
1− h

(
D

1− ε

))
−

max
ν∈[0,1]

{Rh(ν) + F (δ (ν, dc) , ε,D)}+ o(1). (13)

As long as the RHS in (13) stays non-negative, we get
the claim from Lemma II.1.

In the following lemma we derive an upper bound on
the rate distortion performance of the compound LDPC-
LDGM ensemble.

Lemma III.3. Consider the compound LDGM-LDPC
ensemble C (dc, dv, d

′
c,m, n) with overall rate R. Let

B(ν) be an upper bound on the growth rate of the weight
distribution of the (dv, d

′
c)-regular LDPC ensemble. Then

the rate distortion performance of C (dc, dv, d
′
c,m, n) for

the BES(ε) is upper bounded by

R ≥ max
ν∈[0,1]

Rsh
ε (D) + F (δ (ν, dc) , ε,D)

1− B(ν)
RH

,

where F (δ (ν, dc) , ε,D) is defined in Lemma III.1.

Proof: The proof for this lemma is very similar to
the proof of the Lemma III.2. The equivalent of (12) for
the compound construction is

N∑

j=1

P{Xj = 1|X1 = 1, S ∈ SB} =

∑

ν∈[0,1]:
νm∈N

Am(ν)Q (ν, β) ,

where Am(ν) denotes the number of codewords of
weight νm of the LDPC code. We then upper bound
the growth rate of Am(ν) by B(ν) to obtain the desired
result.

In the next section, we prove the optimality of the
compound construction for the BES(ε).

IV. SOURCE CODING OPTIMALITY OF THE
COMPOUND LDPC-LDGM ENSEMBLE

Before proving the optimality of the compound con-
struction, we recall that B(ν) is an upper bound on the
growth rate of the weight enumerator function for the
LDPC code Am(ν). Since the dependence of the function
B on the degree pair (dv, d

′
c) is obvious we will use both

notations B(ν) or B(ν, dv, d
′
c). The following lemma

states some properties on the bounding function B(ν)
which are proved in [7].

Lemma IV.1. For a LDPC code with degrees (dv, d
′
c),

where d′c is even, an upper bound B(ν, dv, d
′
c) on the

growth rate of the weight enumerator function of the code
can be defined for any ν ∈

[
0, 12
]

as

B(ν, dv, d
′
c) = (1− dv)h(ν)− (1−RH)

+dv inf
λ≤0

{
1

d′c
log2

((
1 + 2λ

)d′c +
(
1− 2λ

)d′c)− νλ
}
,

and B(ν) = B (1− ν) for ν ∈
[
1
2 , 1
]
. The function B(ν)

we just defined satisfies the following conditions.
1) B(ν) is symmetric around 1

2 .
2) B(ν) is twice differentiable on (0, 1) with

B′
(
1
2

)
= 0 and B′′

(
1
2

)
< 0.

3) B(ν) achieves its unique optimum at ν = 1
2 , where

B
(
1
2

)
= RH .

4) ∃µ1 > 0 such that ∀ν ∈ (0, µ1), B(ν) < 0.

The next lemma derives some properties of the func-
tion F (δ(ν, dc), ε,D) (defined in Lemma III.1) which
will be useful in proving the optimality of the compound
construction.

Lemma IV.2. For any even degree dc ≥ 4, the function
F (δ(ν, dc), ε,D) is differentiable in the neighborhood of
ν = 1

2 with

F

(
δ

(
1

2
, dc

)
, ε,D

)
= −Rsh

ε (D) (14)

∂

∂ν
F (δ(ν, dc), ε,D)

∣∣∣
ν= 1

2

= 0 (15)

∂2

∂ν2
F (δ(ν, dc), ε,D)

∣∣∣
ν= 1

2

= 0 (16)

Proof: Note that δ
(
1
2

)
= 1

2 , ∀dc ≥ 1. Thus,

G

(
τ, λ,

1

2
, β,D

)
= (1− β) log2

(
f1

(
1

2
, λ

))
−

λD

log 2
+ (1− β)

[
h

(
τ

1− β

)
− h

(
D

1− β

)]
. (17)

Moreover, max
τ∈[0,D]

{
h
(

τ
1−β

)
− h

(
D

1−β

)}
= 0, since

τ
1−β ≤ D

1−β ≤ 1
2 and h(·) is an increasing function on[

0, 12
]
. Finally, the infimum of the first two terms in (17)

is attained at λ = − log
(

1−β
D − 1

)
. Consequently we

have
F

(
δ

(
1

2
, dc

)
, ε,D

)
= −Rsh

ε (D) .

Since δ(ν, dc) is twice differentiable in ν,
F (δ(ν, dc), ε,D) is also twice differentiable in ν.
Since ∂

∂ν δ(ν, dc)
∣∣
ν= 1

2

= ∂2

∂ν2 δ(ν, dc)
∣∣∣
ν= 1

2

= 0 if

dc ≥ 4, then by using chain rule we obtain (15) and
(16).

We are now ready to prove our main result.
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Theorem IV.1. Consider lossy compression of BES(ε)
using the compound construction. Given any distortion
D, D ≤ (1 − ε)/2, ∀η > 0, let R be the desired rate
of compression with R < Rsh

ε (D) + η. Then there exist
degrees (dc, dv, d

′
c) (independent of the block-length) and

a compound code C (G,H) ∈ C (dc, dv, d
′
c,m, n) with

rate R which achieves average distortion D.

Proof: To complete the proof, we need to show that
compound codes with a top degree dc independent of the
block-length are sufficient. We will restrict ourselves to
even d′c. Similar to (13) but for the compound construc-
tion case, equation (3) is equivalent to

∆ ≥ max
ν∈[0,1]

{K(ν, dc)} ,

where ∆ = R − Rsh
ε (D) and K(ν, dc) =

R
RH

B(ν, dv, d
′
c) + F (δ(ν, dc), ε,D). We now divide the

proof into three steps.
1) ∃µ1 > 0, independent of dc, such that ∀ν ∈ [0, µ1],

K(ν, dc) ≤ ∆.
2) ∃µ2 > 0, independent of dc, such that ∀ν ∈[

1
2 − µ2,

1
2

]
, K(ν, dc) ≤ ∆.

3) ∃d∗c < ∞ such that ∀ν ∈ [µ1, 1/2 − µ2],
K(ν, d∗c) ≤ ∆.

Proof of 1): By the last property of B(ν) in Lemma
IV.1, ∃µ1 > 0 such that B(ν) ≤ 0 for all ν ∈ [0, µ1].
Since F (δ(ν, dc), ε,D) ≤ 0 for all ν we have K(ν, dc) ≤
0 < ∆. Note that µ1 is independent of the LDGM part.

Proof of 2): We will use Taylor expansion of K(ν, dc)
around ν = 1

2 up to second order. Note that K(ν, dc) ≤
K(ν, 4), ∀dc ≥ 4 since δ(ν, dc) is increasing in dc and
F (γ, ε,D) is decreasing in γ. Thus it suffices to show
that K(ν, 4) ≤ ∆, ∀ν ∈

[
1
2 − µ2,

1
2

]
. Using Lemma IV.1

and IV.2 we can calculate the derivative of K(ν, dc) with
respect to ν.

K

(
1

2
, dc

)
= R−Rsh

ε (D) = ∆,

∂

∂ν
K (ν, dc)

∣∣∣∣
ν= 1

2

= 0,
∂2

∂ν2
K (ν, dc)

∣∣∣∣
ν= 1

2

< 0.

By continuity of second derivative of K(ν, dc), for some
µ2 > 0 we have for any ν ∈

[
1
2 − µ2,

1
2

]
the second

derivative is negative. For any ν ∈
[
1
2 − µ2,

1
2

]
, there

exists ν̃ ∈ [ν, 1/2] such that

K(ν, 4) = ∆ +
1

2

(
ν̃ − 1

2

)2
∂2

∂ν2
K (ν, dc)

∣∣∣∣
ν= 1

2

≤ ∆.

proof of 3): Using Lemma IV.1 there exists a function
σ(µ2) such that

B(ν) ≤ RH [1− σ(µ2)] for all ν ≤ 1

2
− µ2. (18)

Since F (γ, ε,D) is continuous in γ and
limdc→∞ δ(µ1, dc) = 1

2 , we have

lim
dc→∞

F (δ(µ1, dc), ε,D) = −Rsh
ε (D) .

As F (γ, ε,D) is a decreasing function in γ, for any µ3 >
0, ∃d∗c <∞ such that

F (δ(µ1, d
∗
c), ε,D) ≤ −Rsh

ε (D) + µ3. (19)

Combining the results of both equations (18) and (19)
we have

K(ν, d∗c) ≤ R [1− σ(µ2)]−Rsh
ε (D) + µ3,

= ∆ + (µ3 −Rσ(µ2)).

We complete the proof by choosing any µ3 less than
Rσ(µ2).

V. CONCLUSION

We derived upper bounds on the rate distortion perfor-
mance of the CRP LDGM ensemble and the compound
LDGM-LDPC ensemble for the BES. We showed that
the compound construction can achieve the Shannon rate-
distortion function for lossy compression of the BES.

It is an interesting future research direction to study
performance of sparse graph codes for rate-distortion
encoding of sources other than the BSS and the BES.
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