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Abstract. We present a group signature scheme, based on the hardness of lattice problems, whose
outputs are more than an order of magnitude smaller than the currently most efficient schemes in the
literature. Since lattice-based schemes are also usually non-trivial to efficiently implement, we addi-
tionally provide the first experimental implementation of lattice-based group signatures demonstrating
that our construction is indeed practical – all operations take less than half a second on a standard
laptop.

A key component of our construction is a new zero-knowledge proof system for proving that a com-
mitted value belongs to a particular set of small size. The sets for which our proofs are applicable are
exactly those that contain elements that remain stable under Galois automorphisms of the underlying
cyclotomic number field of our lattice-based protocol. We believe that these proofs will find applications
in other settings as well.

The motivation of the new zero-knowledge proof in our construction is to allow the efficient use of the
selectively-secure signature scheme (i.e. a signature scheme in which the adversary declares the forgery
message before seeing the public key) of Agrawal et al. (Eurocrypt 2010) in constructions of lattice-
based group signatures and other privacy protocols. For selectively-secure schemes to be meaningfully
converted to standard signature schemes, it is crucial that the size of the message space is not too large.
Using our zero-knowledge proofs, we can strategically pick small sets for which we can provide efficient
zero-knowledge proofs of membership.

1 Introduction

Commitments and zero-knowledge proofs of knowledge (ZKPoK) of committed values are a key
ingredient in many privacy-based protocols. It is also often useful to prove various relations among
the committed values, or that the committed values themselves have some particular characteristics.
An example of the latter is proving that the commitment is to an element that belongs to a
particular, possibly small, subset. Even if the subset stays fixed, this is not a trivial problem to
solve efficiently for lattice-based commitments, and we are not aware of any previous practical
solutions to this problem.

In this paper, we use the lattice-based commitment scheme [BDL+18] over cyclotomic rings (e.g.
over Rq = Zq [X] /(Xd + 1)) and consider sets that contain elements that remain stable under a
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certain subgroup of automorphisms of the cyclotomic number field (in our example Q[X]/(Xd+1)).
For the particular example of Zq [X] /(Xd + 1), this allows us to construct sets of size q, q2, q4, . . .
for which we can build a ZKPoK showing that the commitment is to an element in this set.1

An application of our new proof system is towards constructing more practical lattice-based
group signatures [CvH91,BMW03]. A group signature scheme consists of three parties – a trusted
setup authority, a group manager (sometimes also called the opener), and group members. The
setup authority generates a group public key and secret keys for all the group members. Using their
secret keys, the group members can sign messages in a way that anyone can verify that a message
was signed by a member of the group, but the identity of the signer remains secret (one should not
even be able to tell that two messages were signed by the same member) to everyone except for the
opener. The opener should be able to recover the identity of any signer.

Public key Secret key Signature Key Generation Signing Verification

123 KB 146 KB 581 KB 429 ms 405 ms 169 ms

Table 1. User key, signature size, and running time of our C implementation on an Intel Skylake i7-6600U processor.
The instantiation is of a CPA-anonymous version of our scheme with maximum group of 280. The CCA-anonymous
version would have signatures approximately 20% longer.

Prior Work. A common way of constructing group signatures is via the sign-and-encrypt approach.
The group public key that the setup authority creates is the public key to some signature scheme,
and the secret key of a user with identity i is a signature of i. To sign a message, the group
member produces a non-interactive ZKPoK that he has the authority’s signature of some identity
i.2 Furthermore, the group member encrypts his identity i using the opener’s public key, and gives
another ZKPoK of the fact that the encryption is of the same identity as was used in the proof.

To create a practical scheme using the above approach, one typically needs to have a very efficient
standard model signature scheme that is used by the setup authority to sign user identities.3 While
there exist efficient standard model signature schemes based on classical assumptions (e.g. [CL02])
which can be used for constructions of fairly compact group signatures, the non-existence of such
signatures based on lattice assumptions, or any other post-quantum hard problem, is the main
culprit in the fact that the only “efficiency” lattice-based group signatures have is asymptotic ( c.f.
[GKV10,LLNW16,LNWX18]).

Lattice-based signature schemes in the standard model are built based on Boyen’s framework
[Boy10]. There have been efficiency improvements to this scheme (e.g. [DM15,KY16]) that used
polynomial lattices, but they still appear to be unsuitable for producing practical (group) signatures.
The only group signature appearing prior to our work that proposes concrete parameters uses
different techniques, and the signatures in it are on the order of 50MB [LLNW16].

1 More precisely, because the ZKPoK of the commitment scheme in [BDL+18] is “approximate”, we are able to
prove that a small multiple of the commitment opens to the same small multiple of a member of the set. For our
application, this is good enough.

2 The ZKPoK is a Fiat-Shamir transformation of a Σ-protocol, and so the message that the group member signs is
simply added into the random oracle input.

3 The reason that signature schemes using cryptographic hash functions are not suitable is that their lack of algebraic
structure makes it very difficult to construct efficient proofs of knowledge that prove something about the identity
i when it is an input to the random oracle.
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While lattice-based signatures in the standard model are inefficient, there is a much more
efficient selectively-secure lattice-based digital signature scheme that is implicit from the works of
[ABB10,Boy10]. A selectively-secure signature scheme is one in which the adversary declares the
message that he will forge on prior to seeing the public key. A scheme like this can be converted to
a regular signature scheme with a reduction loss of 1/|S|, where S is the message space simply by
guessing the message that the Adversary will forge on. Thus for small message spaces, this becomes
a signature scheme with a meaningful reduction from hard lattice problems.

There have been several previous papers that utilized the above-mentioned selectively secure
scheme for group signatures and related applications [NZZ15,BCN17,BCN18]. In those papers, the
techniques for proving that the identity i is in a particular set resulted in either a significant increase
in the proof size and/or a very noticeable loss in the tightness of the proof.

Roughly-speaking, the reason that the construction in [BCN17,BCN18] is less efficient than
ours is that in order to prove that the message is in a small set, the space of the messages and the
challenges is restricted to a small-dimensional sub-ring. In order to have negligible soundness error,
it is thus necessary to either increase the size of the coefficients of the challenge or to repeat the
protocol several times – both of these solutions end up increasing the size of the signatures. Our
technique, on the other hand, does not require to reduce the degree of the challenge. Additionally,
the construction in [BCN17,BCN18] requires the identity to have small coefficients, whereas the
proof of knowledge has “slack” and proves that the identity has somewhat larger coefficients –
this further decreases the tightness of the reduction. The construction in the current paper uses a
commitment scheme in which the messages need not have small coefficients [BDL+18] and so the
slack in the zero-knowledge proof (which affects the randomness used in the commitment) does not
affect the size of the message coefficients.

Concurrently with our paper, Katz et al. [KKW18] presented a construction of a group signature
scheme based only on the assumption that AES-256 and SHA-256 behave as random oracles. For
small group sizes (approximately 213), the sizes of the signatures are in fact smaller than ours (while
the signing time is still around 8 times longer). For larger group sizes, however, our signatures are
smaller. Additionally the opening procedure of [KKW18] may be prohibitive for large groups as it
is linear in the group size.

Our Contribution. In the present work we show how our new proofs for stability under automor-
phisms allow for a fairly natural, at a high level, group signature construction based on the hardnes
of lattice problems. In particular, the set of identities will be exactly those elements in Rq that
are preserved under some set of automorphisms. The size of these sets can be small (as small as
q), and so we will only lose a factor of the group size in the reduction. The idea for the ZKPoK
will then be to do the proof of knowledge with the commitments of i rather than with i (thus not
revealing the identity) and prove that our commitments are to elements in the appropriate set of
identities – for this we will use the module-homomorphic properties of our commitment scheme –

i.e. if i · s = u, for small s, then Com(i; r) · s =

[
0
u

]
+ Com(0; r′). The encryption to the opener

can be done using the main idea from the verifiable encryption scheme from [LN17]. A point of
note is that the selectively-secure signature scheme requires that the messages come from a set S
such that the difference of any two elements from the set is invertible. This is compatible with our
definition of sets because they turn out to be subfields of the original ring Rq.

Instantiating our scheme with concrete parameters gives group signatures of around 580 KB,
which is almost a 2 order of magnitude reduction from [LLNW16] and about an order of magnitude
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reduction over the concurrent construction in [BCN18].4 Our main technique should also applicable
to a variety of other privacy applications that require similar proofs of knowledge. For example,
one should be able to apply these techniques in a very similar manner to the constructions of
anonymous credentials as in [BCN17].

To demonstrate the practicality of our group signature scheme, we have implemented it in C. On
a laptop with an Intel Skylake i7 processor, the implementation needs 428.7 ms to generate a group
public key and one member secret key. Signing a message takes 404.5 ms and the signature can
be verified in 169.1 ms. For the signing keys of the group members one needs to sample preimages
of a linear map from a discrete Gaussian distribution. This can, in theory, be done with the GPV
sampling algorithm from [GPV08], but it requires computing the Gram-Schmidt decomposition
of a basis which is a prohibitively expensive operation in the high dimensions required for our
scheme. We have therefore implemented the Fast Fourier Orthogonalization algorithm from [DP16]
adapted to cyclotomic fields which computes a compact LDL∗ decomposition of the basis that is
used in a Fast Fourier Nearest Plane algorithm, also from [DP16], to sample preimages. This was
done before in the Falcon signature scheme [PFH+18], but contrary to that implementation, ours
supports arbitrary precision complex arithmetic since double precision is not enough for our larger
moduli.

In Sections 1.1 and 1.2, we give high-level sketches of our main results – the proof of stability
under automorphisms (the full details of which are in Sections 3 and 4) and the construction of the
group signature scheme (the full details of which are in Section 5).

1.1 Commitments and Proofs of Automorphism Stability

We will use a particular instantiation of the commitment scheme from [BDL+18] where the common
reference string public key is [

a1

a2

]
=

[
1 a1 a2
0 1 a3

]
∈ R2×3

q (1)

and the commitment to a polynomial µ ∈ Rq requires us to pick a random polynomial r ∈ R3
q with

small coefficients and output the commitment

Com(µ; r) =

[
t1
t2

]
=

[
a1

a2

]
· r +

[
0
µ

]
. (2)

Using the “Fiat-Shamir with Aborts” zero-knowledge proof technique [Lyu09,Lyu12], one can prove
the knowledge of a polynomial vector r̄ with coefficients somewhat larger than those in r, and a

4 Table 1 of the conference version of [BCN18] gives a signature size of 1.72MB for 80-bits of security. This security,
however, has only been calculated for the traceability part of the security of group signatures (i.e. it’s not possible
to produce a signature that cannot be traced by the opener to a particular user) which is based on the Ring-SIS
problem. The anonymity security notion (i.e. the identity of the signing group member should remain secret) is
based on the hardness of the Ring-LWE problem, and it does not appear that this has been accounted for in the
parameter setting. In particular, the Ring-LWE instance with −1/0/1 secret/noise coefficients in [BCN18] is over
the ring Zq[X]/(Xd + 1) where q ≈ 2115, d = 2048 (for comparison, our ring has q ≈ 280 and d = 4096, both of
which significantly increase the complexity of the problem). By our calculation, d would need to be increased from
2048 to 8192 for the claimed security in [BCN18], and this would increase the signature size by approximately a
factor of 4, making it a little more than an order of magnitude larger than in the current work.
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polynomial c with −1/0/1 coefficients such that

c ·
[
t1
t2

]
=

[
a1

a2

]
· r̄ +

[
0
cµ

]
. (3)

Even though ‖r̄‖ > ‖r‖ and there is an extra term c present, opening the commitment with r̄ and
c can still be binding if the parameters are appropriately set.

In our work, we will additionally show how for certain sets S ⊂ Rq, we can prove (3) and
additionally show that µ ∈ S. The sets for which we are able to show this are those that are
preserved under the automorphisms of the cyclotomic number field Km = Q[X]/(Φm(X)). For
example, if Φm(X) = Xd + 1 (where m = 2d is a power of 2), then the φ(m) = d automorphisms
are σj : X → Xj for all odd integers 0 < j < 2d.

We give a protocol for a proof of knowledge as for (3) which additionally allows us to prove
that σj(µ) ≡ µ(mod q). Our proof is derived from a generalization of a zero-knowledge proof of
linear relations of commitments in (2) from [BDL+18]. In particular, we can show how to prove

linear relations for messages µi for commitments under distinct public keys

[
a
(i)
1

a
(i)
2

]
. For proving

that a commitment in (2) is closed under an automorphism σ then requires proving that the two

commitments

[
t1
t2

]
and

[
σ(t1)
σ(t2)

]
, under the respective public keys

[
a1

a2

]
and

[
σ(a1)
σ(a2)

]
, are both to the

same message – which implies that µ = σ(µ). The communication complexity of this protocol (of
the non-interactive version) involves sending essentially one extra vector of the same size as r̄ for
every automorphism. It is therefore beneficial to not have to prove stability under too many σj .

Galois Theory gives us the exact group structure of the automorphisms and specifies which
subsets of Km are preserved under them. It furthermore allows us to determine the minimum set of
automorphisms that are needed to generate the group. For example, an element v ∈ Q[X]/(Xd+1)
is a constant if and only if σ5(v) = σm−1(v) = v. Thus, proving stability under σ5 and σm−1 would
prove that we have committed to a constant µ. As another example, v ∈ Q[X]/(Xd + 1) is of the
form α+βXd/2 for α, β ∈ Q if and only if σ5(v) = v. Thus for this set of size q2, it is only necessary
to prove stability under one automorphism.

The situation in our case is made more complicated due to the fact that we give proofs that
σj(v) ≡ v(mod q), while Galois Theory only tells us about stability of sets with coefficients over Q
(i.e. without reduction modulo q). So one could fathom that σj(v) = v modulo q but σj(v) 6= v.
We show, however, that one can find primes q such that subsets of Zq[X]/(Φm(X)) have the same
properties under automorphisms as subsets of Z[X]/(Φm(X)). In particular, we can build subsets of
size qi for all i | φ(m). For the particular case of rings of the form Zq[X]/(Xd+ 1), this implies that
one can have a generating set of 1 or 2 automorphisms for particular sets of size q, q2, q4, . . . , qd/2.
We also give concrete descriptions of these sets and show efficient procedures for generating elements
in them.

1.2 Group Signatures

We now give a high level overview of how one would use the techniques to construct a group
signature scheme. The master group public key of the setup authority will be a public key for the
selectively secure signature scheme from [ABB10] adapted to polynomial rings:

[ a | b ], u = a · s′1 + b · s′2 + a2 · s′3 (4)
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where a = [a a′] for a uniformly-random a, a′ and b = [b1 b2] = a ·
[
r1 r2
e1 e2

]
where ri, ei are

polynomials in Rq with small coefficients such that (a, b1, b2) are indistinguishable from random
based on the hardness of the Ring-LWE problem. The group member identities are polynomials
i ∈ S ⊆ Rq where the set S is preserved under some set of automorphisms of Rq. The secret key of
a user with identity i consists of vectors s1, s2, s3 that are generated by the setup authority using his

secret trapdoor key R =

[
r1 r2
e1 e2

]
. The setup authority first picks a short vector s3 from a particular

distribution, and then “pre-image samples” short vectors s1, s2 such that

[ a | b + i · [ 1
√
q] ] ·

[
s1
s2

]
= u+ a2 · s3. (5)

The matrix [ 1
√
q ] is sometimes referred to as the “gadget matrix”5 that allows for efficient

pre-image sampling of short vectors s1, s2 as in (5) for all i 6= 0. The procedure for computing
such vectors in a way that produces a distribution independent of the secret key R is described in
[MP12]. When i = 0, the setup authority can output s′1, s

′
2,−s′3 as the key.6 The purpose of the

a2 · s3 part of the construction is only necessary for the security proof – it’s unclear if it truly adds
any security in practice. The performance downside of including this term is fairly small — one
needs to do an extra sampling of s3 and multiplication by a2 in the key generation, and the size
of the solution to the Ring-SIS problem in the security proof is a small (virtually inconsequential)
additive factor larger. For the following high-level overview, the reader can just take s3,a2 = 0.

Signing. The high level idea for signing is for the user with identity i to prove knowledge of
s1, s2, s3 that satisfies (5). If the proof of knowledge is a Σ-protocol, then it can be converted into a
non-interactive proof using the Fiat-Shamir heuristic, which turns the Σ-protocol into a signature
scheme if one inputs the message into the random oracle. The main difficulty in all group signature
constructions lies in doing this proof without revealing i.

To hide i in our proof, the signer will commit to i and i
√
q using the commitment scheme from

Section 1.1 and publish his commitments as part of the signature. The main observation is that

[[
0
a

]
|
[
0
b

]
+ [Com(i; r) Com(i

√
q; r′)]

]
·
[
s1
s2

]
=

[
0

u+ a2 · s3

]
+

[
a1

a2

]
· r̃. (6)

The signer will give an approximate ZKPoK of the short randomnesses r, r′ that open the
commitments to i, i

√
q and also that i ∈ S.7 In other words, he’ll prove knowledge of

5 The gadget matrix for polynomials is more generally defined as [1 q1/b q2/b . . . q(b−1)/b] for some b. In this work,
we take b = 2. Also, we write

√
q instead of d√qc for improved readability.

6 For i 6= 0, the setup authority is able to output many possible valid s1, s2, s3 using his trapdoor and the gadget
matrix. For i = 0, however, the gadget matrix disappears and so the setup authority is only able to return one
s′1, s

′
2,−s3 that he “planted” when creating u in (4). For the security proof, it will be necessary that the distribution

for all i is the same, and so for this reason, we make the pre-image sampling procedure for all i deterministic. In
other words, the randomness used in the sampling will be derived by the setup authority using a keyed PRF whose
input depends on i.

7 Due to the slack in our zero-knowledge protocols, the proofs will be for larger values of r, r′ than those used in the
commitments. But for simplicity of exposition in the introduction of this paper, we will use the same notation.
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[
a1

a2

]
· [r r′] +

[
0 0
ci ci
√
q

]
= c ·

[
t
(1)
1 t

(2)
1

t
(1)
2 t

(2)
2

]
. (7)

In parallel, the signer will also prove that[
a | b + [t

(1)
2 t

(2)
2 ]
]
·
[
s1
s2

]
= cu+ a2 · r′′.8 (8)

Multiplying (8) by c and combining with (7) produces the equation

[
a | cb + a2 · [r r′] + c · [i i√q]

]
·
[
cs1
s2

]
= c2u+ ca2 · r′′. (9)

We can then show that if an Adversary can produce polynomial vectors r, r′, s1, s2, r
′′, c with

small coefficients that satisfy the above equation, then he is able to solve the Ring-SIS problem.
The proof is very similar to the proof of selective security for the signature scheme of [ABB10] .
Intuitively, suppose that the Adversary in the impersonation game produces a solution (i.e. the
extracted values from the PoK) for (9) for i = 0. Then, using the fact that b = aR and u =
a · s′1 + b · s′2 + a2 · s′3 and writing R′ = [r r′], (9) can be rewritten as

a ·
(
cs1 + cRs2 − c2s′1 − c2Rs′2

)
+ a2 ·

(
R′s2 − cr′′ − c2s′3

)
= 0, (10)

which is a solution to the Ring-SIS problem because the coefficients of all the terms in parentheses
are small relative to q.

Of course, the Adversary is not guaranteed to impersonate on identity i = 0, but may choose an
arbitrary i′ ∈ S. To handle this, we use the standard “puncturing” technique. In the security proof
we would not choose b = aR as part of the public key, but we rather pick a uniformly-random
“guess” i′ ∈ S, and set b = aR − [i′ i′

√
q] as part of the public key. It’s not hard to see that if

the Adversary produces a solution for (9) with i = i′, then one again obtains the same Ring-SIS
solution as in (10). If the Adversary cannot tell how b was constructed, even after querying for
preimages s1, s2, s3, then there is exactly a 1/|S| chance that i = i′. Therefore there is a 1/|S| loss
in the tightness of the security reduction.

For the purposes of allowing opening, the signer will also create a Ring-LWE encryption of
the three polynomials comprising the vector r used in the commitment of i in (7) using the one-
shot verifiable encryption / proof of plaintext knowledge from [LN17] combined with the proofs of
knowledge for (7). The reason that we encrypt r rather than i is that the coefficients in r are small,
whereas i comes from a set that is stable under some automorphism, and such sets contain elements

with large coefficients. Once the opener decrypted r, he knows from (7) that a1 · r = c · t(1)1 , and so

he can recover c. Then using this c, he can recover i from the equality a2 · r + ci = c · t(1)2 .

Reducing the Commitment Size. To reduce the size of the signature, we can slightly modify the (2)
so that it works over two different moduli, one for the top and another for the bottom part (call
them q1 and q2 respectively). In our group signature scheme, the value of q2 needs to be large due
to the fact that the Ring-SIS solution in (10) is fairly large itself. The value of q1, on the other
hand, only needs to be set so that the commitments to i and i

√
q in (7) are binding and hiding.

8 Notice that we combined the a2 · s3 term with a2 · r̃ term to obtain a2 · r′′. This was the reason that we used
exactly a2 from the commitment scheme in the key generation in (5).
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Since a smaller q1 will result in smaller sizes of t
(1)
1 , t

(2)
1 in the commitment, it is sensible to set it as

small as possible. We show that our proofs of automorphism stability still work if the two moduli
are different.
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2 Preliminaries

2.1 Notation

Throughout this paper we will consider a polynomial ring R of the form Z[X]/(Φm(X)), with
Φm(X) the mth cyclotomic polynomial. We will denote elements of R by lowercase letters, vectors
overR in bold lowercase and matrices overR in bold uppercase. e.g. A =

[
a1 | . . . | ak

]
∈ Rl×k with

ai = (ai1, . . . , aim)T ∈ Rl, remark that we consider column vectors over R. We will consider the

norm of elements in R to be ‖a‖ = |a| if a ∈ Z, and ‖a‖ =
√∑

a2i if a =
∑
aiX

i ∈ Z [X] /(Xd+1).

We extend the notation to vectors and matrices ‖a‖ =
√∑

‖ai‖2, ‖A‖ =
√∑

‖ai‖2. We will also

consider the quotient ring Rq = R/qR for which the norm of an element Rq will be the norm of

its unique representative R with coefficient s in
[
− q−1

2 , q−12

]
.

We will also consider the operator norm of matrices in Rl×k defined as s1(A) = max
‖x‖6=0

(
‖Ax‖
‖x‖

)
. For

β ∈ R, we define the set Sβ to be the set of all polynomials of infinity norm less than beta, i.e.
Sβ = {a ∈ R | ‖a‖∞ ≤ β}.

2.2 Invertibility of Challenges

For many of our protocols we will use the challenge set of polynomials

C = {c ∈ R | ‖c‖1 = κ, ‖c‖∞ = 1}

and define C̄ as in Table 2. We will sometimes need the fact that all polynomials in C̄ are invertible
over some particular polynomial ring. The following lemma from [LS18] guarantees such a property
for well chosen power-of-two cyclotomics. A similar theorem holds for general cyclotomics.

Lemma 2.1. [LS18, Corollary 1.2] Let d ≥ k > 1 be powers of 2 and q ≡ 2k + 1(mod 4k) be a
prime. Then the polynomial Xd + 1 any c in Zq[X]/(Xd + 1) such that 0 < ‖c‖ < 1√

k
· q1/k has an

inverse in the ring.

2.3 Norms and Gaussians

While we prove results for any cyclotomic ring R = Z [X] /(Φm(X)) in section 3, we will, for
simplicity, restrict the construction of section 5 to power-of-two cyclotomics, i.e. rings of the form
Z [X] /(Xd + 1) for d a power of two. This way we can use the euclidean norm rather than the
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embedding norm.

Define the function ρσ(x) = exp
(
−x2
2σ2

)
and the discrete Gaussian distribution centered in v ∈ R

over the integers, Dσ, as

Dσ(x) =
ρ(x)

ρ(Z)
where ρ(Z) =

∑
v∈Z

ρ(v).

We will write x ← DR,σ to mean that every coefficient of the polynomial x ∈ R is distributed
according to Dσ. When clear from context we will simply write this as x← Dσ.

Using the tail bounds for the 0-centered discrete Gaussian distribution (cf. [Ban93]), we can
show that for any σ > 0, x← Dσ is likely to be close to σ. Namely, for any k > 0 it holds that

Pr
x←Dσ

[|x| > kσ] ≤ 2e−k
2/2, (11)

and when x is drawn from Dn
σ , we have

Pr
x←Dnσ

[‖x‖ >
√

2n · σ] < 2−n/4. (12)

We give an important lemma on rejection sampling which will guarantee that the responses used
in our zero-knowledge protocols do not leak information.

Algorithm 1 Rej(z,b, σ)

u← [0, 1)

if u > 1
3
· exp

(
−2〈z,b〉+‖b‖2

2σ2

)
then

return 0
else

return 1
end if

Lemma 2.2 ([Lyu12]). Let V be a subset of Rn with elements of norm less than T, let h be a
distribution of V. b ∈ Rn. Consider a procedure that samples a y ← Dn

σ and then returns the
output of Rej(z := y + b,b, σ) where σ ≥ 11‖b‖. The probability that this procedure outputs 1 is
within 2−100 of 1/3. The distribution of z, conditioned on the output being 1, is within statistical
distance 2−100 of Dn

σ .

2.4 M-SIS and M-LWE

In this section we introduce the hard problems on which our schemes rely. We will be using the
”Module” (or “Generalized”) variants of the LWE and SIS problems, introduced in [BGV12,LS15].
These are generalizations of the usual LWE and SIS problems in the sense that, while the former
are defined over the ring Zq, the latter are instantiated over polynomial rings Rq. Since we will
instantiate our scheme with power-of-two cyclotomic ring we only define those problems for this
setting. M -SIS and M -LWE can be defined for any ring but the definitions are more cumbersome
(see [LS15]). For simplicity we will consider the M -LWE problem in which the secret and the
randomness are sampled in S1 (i.e. uniformly from the set of elements bounded in infinity norm)
this assumption is common in practical cryptographic schemes, e.g. [BDK+18,DKL+18,LN17].

9



R The cyclotomic ring = Z [X] /(Xd + 1)
d The dimension of R

q1, q2 The moduli used in our commitment
k Width (over R) of the commitment matrices

n
Height (over R) of the commitment matrix

A1

l Dimension (over R) of the message space

C, κ Challenge set
C =

{
c ∈ R | ‖c‖1 = κ, ‖c‖∞ = 1

}
C̄ The set of differences C − C except 0

s,r
The standard deviation of the secret keys in

our group signature

p
The plaintext modulus for our verifiable

encryption

Q
The ciphertext modulus for our verifiable

encryption

Table 2. The parameters of our commitment, zero-knowledge, group signature, and verifiable encryption schemes

Definition 2.3 (M-SIS [LS15]). The M -SISq,n,m,β problem (over an implicit ring R) is defined
as follows. Given A ∈ Rn×mq sampled uniformly at random, find z ∈ Rm such that Az = 0 and
0 < ‖z‖ ≤ β.

Definition 2.4 (M-LWE [BGV12,LS15]). The decision M -LWEq,m,n problem (over an implicit

ring R) is defined as follows. Let s
$← Sn1 , let Aq,s be the distribution obtained by sampling a

$← Rnq ,

e
$← S1, and returning (a, 〈a, s〉+ e) ∈ Rnq ×Rq. The goal is to distinguish between m samples from

either Aq,s or U
(
Rnq ,Rq

)
.

The number of samples m in the above definition of M -LWE does not have any known effect on
the hardness of the problem unless it is large enough (at least as large as (nd)3) in order for the
Arora-Ge linearization attack to apply [AG11]. In this paper, the number of samples will always
be significantly lower than this (only linear in nd), and so we will omit the m and simply write
M -LWEq,n.

Definition 2.5 (NTRU). The NTRUq,r problem (over an implicit ring R) is defined as follows.

The distribution A is defined by sampling ring elements f, g
$← Dr and outputting h = f/g, if g is

invertible in Rq (otherwise, re-sample g). The NTRUq,r problem is to distinguish h from a random
element in Rq.

2.5 Commitments

We use a variant of the commitment scheme of [BDL+18] with computationally hiding (based on
M-LWE) and binding (based on M-SIS) commitments. As per [BDL+18], this allows for the most
efficient setting of parameters. We will also slightly modify the original scheme by consider the top
part of the commitment equation A1r = t1 modulo a prime q1 while the bottom part A2r+m = t2
will be modulo a different prime q2.

The reason for using two different moduli is that the hardness of the group signature is, in part,
based on the hardness of the M-SIS problem modulo q2. The solution to this M-SIS problem that
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we’re able to extract is large, and so it makes sense to set q2 larger and make the M-SIS problem
harder. Thus we’re taking q2 > q1 not for the purposes of making the commitment scheme harder,
but due to the fact that q2 also comes up in the hardness of a different part of the protocol.

CKeyGen: Create the public parameters A1 ∈ Rn×kq1 and A2 ∈ Rl×kq2 such that:

A1 :=
[
In A′1

]
, where A′1

$← Rn×(k−n)q1

A2 :=
[
0l×n Il A′2

]
, where A′2

$← Rl×(k−n−l)q2

Commit: To commit to a message m ∈ Rlq2 , sample a randomness r
$← Sk1 and output:

Com(m; r) :=

[
t1
t2

]
=

[
A1

A2

]
r +

[
0
m

]
Open: A valid opening of t1, t2 ∈ Rnq1 ×R

l
q2 consists of a message m ∈ Rlq2 , a randomness r ∈ Rk,

and a polynomial c ∈ R such that:

c

[
t1
t2

]
=

[
A1

A2

]
r + c

[
0
m

]
With ‖r‖ ≤ Bcom and c ∈ C̄.

The parameters n, k ∈ Z must be set so that the commitment is hiding and binding. The
parameter l ∈ Z dictates the size of the message space. We remark that an opening of a commitment
does not simply consist of a message and a randomness but also includes a small polynomial c which
multiplies the commitment. The reason is that when doing zero-knowledge proofs for commitments
the knowledge extractor will not be able to extract an exact opening of t = Com(m; r) but only
an opening of ct where c will be the difference of two challenges. We prove that our commitment
is hiding and binding in Section 6.1.

2.6 Trapdoor sampling

Recall in the group signature the manager has to sample short vectors s1, s2 such that

[ a | b + i · [ 1 d√qc] ] ·
[
s1
s2

]
= u+ a2 · s3.

By [MP12, Lemma 5.3] there exists a basis S ∈ Z4d×4d for the lattice Λ⊥ = {x ∈ R4 | [ a | b + i ·
[ 1 d√qc] ]·x ≡ 0 (mod q)} whose Gram-Schmidt orthogonalization fulfills ‖S̃‖ ≤ (s1(R)+1)

√
δ2 + 1

with δ = d√qc. For random matrices in Z2d×2d, the expected value of the largest singular is 2 ·
√

2d.

We found experimentally that for our structured matrix R it is slightly larger but less than 3
√
d.

Now a short preimage [ s1 s2 ]T of u+a2 ·s3 can be sampled by computing an arbitrary solution
[ x1 x2 ], expressing this solution in the basis S of the orthogonal lattice Λ⊥ and decoding using
the randomized nearest plane discrete Gaussian sampler from [GPV08]. This gives a solution that
is distributed as a discrete Gaussian with parameter s = 2 · ‖S̃‖ ≤ 2(3

√
d + 1)

√
δ2 + 1 and is

statistically independent from the trapdoor.
In the security proof of the group signature scheme we also need that one can sample preimages

of matrices [ 1 b ] of NTRU lattices with the help of a trapdoor b = f/g with short f , g. Us-
ing [DLP14] we can assume that f , g lead to a basis with maximum Gram-Schmidt norm less than
1.17
√
q. Then we can compute discrete Gaussian preimages with Gaussian parameter r = 2·1.17

√
q.
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3 Galois Group Structure of Cyclotomic Rings

In Section 4 we will want to construct a proof of knowledge of an opening µ ∈ Rq = R/qR to a
commitment with the additional guarantee that µ lies in a certain subset of Rq. For our purposes
of group signatures we need µ to be invertible and therefore want the subset to be a subfield. We
do this by proving that µ is fixed by certain automorphisms that we construct from the Galois
automorphisms of our cyclotomic field K. This then shows that µ is contained in Sq = S/qS where
S ⊂ R is the ring of integers of a subfield of K. Here we can arrange for the prime number q to
stay inert in S so that Sq is a field.

3.1 Generic Cyclotomic Rings

We have the following setup. K = Q[X]/(Φm(X)) is the m-th cyclotomic number field of degree
d = ϕ(m) with ring of integers R = Z[X]/(Φm(X)). Let L ⊂ K be a subfield of K, not necessarily
cyclotomic, with ring of integers S ⊂ R. We thus have the following diagram of rings and fields.

Z ⊂ Q

S ⊂ L

R ⊂ K

Finally suppose q is a prime number that is inert in L, i.e. such that Sq = S/qS ⊂ Rq is a field,
and unramified in K.

The automorphisms of K form a group under composition called the Galois group of K which
we denote by G = Gal(K/Q). It is easy to see that all automorphisms fix the rational numbers
Q, σ(x) = x for all σ ∈ G and x ∈ Q. Conversely, cyclotomic fields are special among general
number fields in that they are Galois over Q meaning that only the elements of Q are fixed by all
automorphisms. The Galois group of cyclotomic fields is isomorphic to Z×m where the isomorphism

j 7→ σj : Z×m → Gal(K/Q)

is defined by σj(X) = Xj and Q-linear extension. In general the degree of a Galois extension of
fields is always equal to the order of the Galois group. The main theorem of Galois theory says
that there is a one-to-one correspondence between the subgroups of G and the subfields of K. For
example the subgroup H < G corresponding to the subfield L ⊂ K is the Galois group of K over
L consisting of the automorphisms of K that fix the elements in L,

H = Gal(K/L) = {σ ∈ G | σ(x) = x ∀x ∈ L}.

Conversely, L is the subfield of K consisting precisely of the elements that are fixed by all auto-
morphisms in H and as such it is called the fixed field of H. Note that this implies the extension
K/L is again Galois. Since G is abelian, also L is Galois over Q and the Galois group Gal(L/Q) is
isomorphic to G/H. So the index of H in G, i.e. the order of G/H, is equal to the degree of L.

By restricting the automorphisms ofK to the cyclotomic ringR ⊂ K we get ring automorphisms
ofR. Moreover, since any ideal generated by a rational integer is stabilized under all automorphisms,
the automorphisms factor through to automorphisms of the quotient ring Rq.
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Theorem 3.1. Let µ ∈ Rq be an element that is fixed modulo q by all Galois automorphisms σ ∈ H
of K fixing L; that is,

σ(µ) ≡ µ (mod qR) for all σ ∈ H.

Then µ is contained in the subfield Sq of Rq.

Proof. (Theorem 3.1) Since R is a Dedekind domain, the ideal qR of R can be (uniquely) written
as a product of prime ideals, qR = q1 . . . qr [NS99, Theorem 3.1]. Let q be one of these prime
ideals, say q = q1. The residue class field R/q is a finite extension of the finite field Sq since q lies
over the prime ideal qS of S, q ∩ S = qS. As such it is Galois over Sq with cyclic Galois group
Gal((R/q)/Sq) [Hun12, Proposition 5.10]. In contrast to qR, the prime ideal q is not stabilized by
the whole Galois group H. So let Hq be the subgroup of H that stabilizes q so that σ(q) = q for all
σ ∈ Hq. This group is called the decomposition group of q over S in Hilbert’s ramification theory
[NS99, Definition 9.2]. Then we have the canonical homomorphism Hq → Gal((R/q)/Sq), σ 7→ σ̃
where σ̃(x+ q) = σ(x) + q. It is an important fact in class field theory that this homomorphism is
surjective [NS99, Proposition 9.4]. Hence, σ̃(µ + q) = σ(µ) + q = µ + q for all σ̃ ∈ Gal((R/q)/Sq)
and it follows from Galois theory that µ+q ∈ Sq and therefore µ ≡ x (mod q) for some x ∈ S. The
Galois group H acts transitively on the prime ideals qi over qS [NS99, Proposition 9.1]. Therefore,
for every i = 1, . . . , r, there is some σ ∈ H such that σ(q) = qi. It follows that µ ≡ σ(µ) ≡ σ(x) ≡ x
(mod qi) and hence µ ≡ x (mod qR) which shows that µ ∈ Sq.

We explain how we use Theorem 3.1. If we want to be able to prove knowledge of a message
µ in a subfield Sq of size qk for some k dividing d, we start from the Galois group G and select a
subgroup H of order d

k . Then its fixed field L has degree |G/H| = k and the quotient Sq has size qk

as we wanted. Unfortunately, primes q that are inert in L do not always exist. In fact it is necessary
that G/H is cyclic. To understand this recall from the proof of Theorem 3.1 that if q is inert in L
there is an isomorphism from G/H to the cyclic Galois group of the extension of finite fields Sq/Zq
and so also G/H is cyclic. On the other hand, if G/H is cyclic, then it follows from the Chebotarev
density theorem that infinitely many inert primes exist with density ϕ(k)/k [NS99, Theorem 13.4].

Write m = p
ν(p1)
1 . . . p

ν(pr)
r for the prime decomposition of m. Then we have that G ∼= Z×m factors

as Z×
p
ν(p1)
1

× · · · × Z×
p
ν(pr)
r

. All the direct factors for odd pi are cyclic and Z×
2ν(2)

is cyclic if ν(2) ≤ 2

and otherwise isomorphic to the product of the two cyclic groups Z2 and Z2ν(2)−2 . We see that in
order for the quotient G/H to be cyclic we can divide out all but one of the cyclic factors to get

orders k of cyclic quotients that divide either (pi− 1)p
ν(pi)−1
i for an odd pi or pi = 2 with ν(2) ≤ 2,

or 2ν(2)−2 if ν(2) > 2.

If we now compute a commitment to a message µ ∈ Sq, then, by Theorem 3.1, it is enough to
prove that µ is fixed by the Galois automorphisms in H in order to establish that µ lies in Sq of
order qk. In fact, it clearly suffices to only prove that µ is fixed by a set of generators for H, which
are usually only one or two.

For using Theorem 3.1 in practice we need to be able to compute elements in Sq. For this we
give a Zq-basis of the field Sq. By the primitive element theorem there exists a single generator
α of L = Q[α] that lies in S [Hun12, Proposition 6.15]. Its powers form a Q-basis for L but in
general, since L is not necessarily cyclotomic, they do not form an integral basis so they are not a
Z-basis for S. In fact, O = Z[α] is only a so-called order in L which can be strictly smaller than
the ring of integers S. Fortunately this does not pose a problem for us as we are only interested in
Sq. Oq = O/qO is a subring of Sq but since it also has qk elements it must be equal to Sq. This
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shows there is an element of O in every coset of S modulo qS and we can use the powers of α as a
Zq-basis for Sq. More precisely, 1, α, α2, . . . , αk−1 is a Zq-basis for Sq and we have

Sq = {c0 + c1α+ · · ·+ ck−1α
k−1 ∈ Rq | ci ∈ Zq}.

As we are mainly interested in the power-of-two case we only give concrete generators α for
all cyclic subfields of power-of-two cyclotomic fields in the next section but it is easy to compute
generators for other examples.

What remains is to decide whether a given prime q is inert in L. A general approach is to
compute the minimal polynomial of a generator α of L. Then the Dedekind-Kummer theorem
says that q is inert in L if and only if the minimal polynomial is irreducible modulo q [Coh00,
Theorem 4.8.13]. For the power-of-two case we give a much more direct answer to this question.

3.2 Power-of-Two Cyclotomic Rings

We consider the case where K = Q[X]/(Xd + 1) is a power-of-two cyclotomic field. The Galois
group G, being isomorphic to Z×2d, has structure Z2×Zd/2 where the cyclic subgroups Z2 and Zd/2
are generated by σ−1 and σ5, respectively [LS18, Lemma 2.4].

In the simplest case when we choose the subgroup H to be the full Galois group G, then the
fixed field L is Q and Sq = Zq is a field for every prime number q. Theorem 3.1 gives that if some
element µ ∈ Rq is fixed by σ−1 and σ5, then µ ∈ Zq.

For subfields of degree k|d with k < d, take as H the subgroup 〈σ−1, σk5 〉 = Zk.

Theorem 3.2. Let d > k ≥ 1 be powers of 2. The subgroup H = 〈σ−1, σk5 〉 of the Galois group

G = Gal(K/Q) has index k. Its fixed field L is generated by α = Xd− d
2k −X

d
2k over Q inside K,

L = Q[α] ⊂ K.

Proof. (Theorem 3.2) For k = 1 the subgroup H is equal to the whole Galois group G so its fixed
field is Q which indeed is generated by α = 0. For k > 1, H has order 2 · d2k = d

k and thus G/H

has order k. Now observe σ−1(α) = X
d
2k
−d − X−

d
2k = −X

d
2k + Xd−

2k = α since Xd = −1. By
repeated squaring one finds 5k ≡ 1+4k (mod 8k) and hence d

2k (5k−1) ≡ 0 (mod 2d). Consequently

σk5 (α) = X(d− d
2k

)5k −X
d
2k

5k = Xd− d
2k −X

d
k = α. So, α lies in L. Now consider the subfield L′ ⊂ K

fixed by the Galois group 〈σ−1, σk/25 〉. It has degree k/2 and is contained in L since its Galois group

contains H, which implies L is of degree 2 over L′. α is not fixed by σ
k/2
5 which means it does not

lie in the subfield L′ of degree k/2 and therefore α generates L.

For selecting primes it is helpful to compute the minimal polynomial of the generator α of L.
The roots of the minimal polynomial are the conjugates of α under the action of G/H so it is given
by

φ(Y ) =
∏

σ∈G/H

(Y − σ(α))

and the coefficients are the symmetric polynomials in the conjugates of α. We give an example
for the case where the subfield has degree k = 4. A system of representatives for the Galois group

G/H is given by {1, σ5, σ25, σ35}. The conjugates of α = Xd− d
8 − X

d
8 are σ5(α) = Xd−5 d

8 − X5 d
8 ,

σ25(α) = Xd−25 d
8 −X25 d

8 = X−
d
8 −Xd+ d

8 = X
d
8 −Xd− d

8 = −α and σ35(α) = −σ5(α). Now it is easy
to compute φ(Y ) = Y 4 − 4Y 2 + 2.
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Theorem 3.3. The prime numbers that are inert in the fixed field L of 〈σ−1, σk5 〉 for some power
of two 1 < k < d are precisely the primes that are congruent to 3 or 5 modulo 8. They split into
two prime ideals in K.

Proof. (Theorem 3.3) First consider the case q ≡ 5 (mod 8). The Legendre symbol (−1/q) is equal
to 1 so there is a square root r of −1 modulo q. We get that Xd + 1 ≡ (Xd/2 − r)(Xd/2 + r)
(mod q). It follows from [LN86, Theorem 3.35] that the two factors of degree d/2 are irreducible.
Hence q splits into two prime ideals in K. They are fixed by σ5 and mapped to each other by
σ−1. Therefore q splits over the course of the subextension K/L where L is the fixed field of 〈σ−1〉
and stays inert in L and in all subfields of L. Next we handle the case q ≡ 3 (mod 8). In this
case (−2/q) = 1 so that there exist an r ∈ Zq with r2 ≡ −2 (mod q). This allows us to write
Xd + 1 ≡ (Xd/2 + rXd/2 − 1)(Xd/2 − rXd/4 − 1). These factors are again irreducible and q splits
only into two prime ideals that are stabilized by the subgroup 〈σ−1σ5〉 of order d/2, which therefore
is the decomposition group of q. Since σ−1 is not contained in this group we see that q again splits
over the course of the extension K/L and consequently stays inert in all subfields of L.

We end this section by giving and alternate subfield of degree 2 where we take H = Zd/2 = 〈σ5〉.
Then σ5(X

d/2) = X5d/2 = Xd/2 and hence Xd/2 lies in the fixed field L of H. But since L is only
of degree 2, it is already generated by α = Xd/2. In fact, α has minimal polynomial Y 2 + 1 and L is
the field of Gaussian integers inside K. An odd prime number q is inert in this imaginary quadratic

field if and only if the Legendre symbol
(
−1
q

)
is equal to −1 [NS99, Proposition 8.5], which is the

case if and only if q ≡ 3 (mod 4). This subfield of degree 2 has the advantage that only proving
stability under one automorphism σ5 is necessary. Also in this case there exist prime numbers q
that split into more than two primes in K which allows for faster multiplication using the Fast
Fourier Transform. We have

Sq = {c0 + cd/2X
d/2 ∈ Rq | c0, cd/2 ∈ Zq}.

Table 3 summarizes the subfields of degree k ≤ 8 in K for d = 4096. We give an example
how it can be used. Suppose we want to commit to messages in a subfield of size q2 in Rq =
Zq[X]/(X4096 + 1) and give a proof that they are really contained in this subfield. Then we can
compute messages µ = c0 + c1α = c0 + c1(X

3072−X1024) ∈ Rq with arbitrary c0, c1 ∈ Zq. They are
fixed by the two automorphisms σ−1 and σ25 and if we prove that they indeed are, then it follows
the messages are of this form. Moreover, these messages form a subfield of Rq and are therefore
invertible.

4 Proofs of Knowledge

The goal of this section will be to construct a proof that a commitment opens to a message that is
invariant under certain automorphisms. We will first introduce a more generic protocol that allows
one to prove that the openings of a set of commitments verify a given linear relation. This protocol
can be used even if the aforementioned commitments use different public keys and have different
dimensions. We present this protocol as a standalone result as we think it can be of independent
interest. We then show how, using the results of Section 3.1, we can adapt this generic protocol to
obtain a proof of automorphism stability.
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Degree Galois group H Generator α of L
Minimal

polynomial of
α

1 〈σ−1, σ5〉 1 Y − 1
2 〈σ−1, σ

2
5〉 X3072 −X1024 Y 2 − 2

2 〈σ5〉 X2048 Y 2 + 1
4 〈σ−1, σ

4
5〉 X3584 −X512 Y 4 − 4Y 2 + 2

8 〈σ−1, σ
8
5〉 X3849 −X256

Y 8 − 8Y 6 +
20Y 4 −

16Y 2 + 2

Table 3. Subfields of the power-of-two cyclotomic field K = Q[X]/(X4096 + 1) of degree at most 8 with generators
for the corresponding Galois group H, generators of the subfields, and their minimal polynomials over Q.

4.1 Generic Proof for Linear Relations

In this section we will present a novel proof of knowledge that a set of commitments t1, . . . , tτ are
such that their openings m1, . . . ,mτ verify

τ∑
1

Bjmj = 0

for any fixed B1, . . . ,Bτ . An interesting property of this protocol will be that the commitment
matrices A1, . . . ,Aτ do not have to be identical, in fact they can even have different dimensions as
long as all the matrices B1, . . . ,Bτ have the same number of rows.

Concretely, for j ∈ [τ ] let Aj :=

[
Aj,1

Aj,2

]
with Aj,1 ∈ R

nj×kj
q1 and Aj,2 ∈ R

lj×kj
q2 , let Bj ∈ R

x×lj
q2 , and

let

tj :=

[
tj,1
tj,2

]
= Ajrj +

[
0

mj

]
, with rj ∈ Rkj , mj ∈ R

lj
q2

be such that
τ∑
1

Bjmj = 0. (13)

We prove in Lemma 4.1 that the protocol of Figure 1, in which the challenge space is

C = {c ∈ R : ‖c‖1 = κ, ‖c‖∞ = 1} ,

is a proof of knowledge that the commitments t1, . . . , tτ are well formed and that their openings
verify (13)

Lemma 4.1. Let rj
$← S

kj
1 . Let ξ ≥ 11κ

√
d
∑
kj and B′j ≥

√
2dkjξ. Also, let C̄ (defined as in

Table 2) be such that all elements in it are invertible over Rq2. Then the protocol Πlin of Figure 1
achieves the following properties:

– Correctness: The prover aborts with probability at most 2
3 + 2−100, and if he does not abort the

verifier accepts with overwhelming probability.
– Honest-Verifier Zero-Knowledge: Non-aborting transcripts with an honest verifier can be sim-

ulated with statistically indistinguishable distribution.
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P V

For j ∈ [τ ] Aj , tj,1, tj,2,Bj , B
′
j ≥

√
2dkjξ

Aj :=

[
Aj,1

Aj,2

]
, rj ,mj ,Bj

where:

Aj,1 ∈ R
nj×kj
q1 , Aj,2 ∈ R

lj×kj
q2

rj ∈ Rkj , mj ∈ R
lj
q2 , Bj ∈ R

x×lj
q2

s.t

[
tj,1
tj,2

]
= Ajrj +

[
0
mj

]
and

∑
Bjmj = 0 ∈ Rxq2

∀j, yj ← D
kj
ξ

∀j, wj,1 := A1yj

w2 =
∑
j BjAj,2yj

∀j,wj,1,w2- c
$← C

c�
∀j, zj := rjc+ yj

Rej((z1, . . . , zτ ), (r1c, . . . , rτc), ξ)
∀j, zj-

Check:
∀j, ‖zj‖ ≤ B′j
∀j, Aj,1zj = tj,1c+ wj,1∑

BjAj,2zj = c
∑

Bjtj,2 + w2

Fig. 1. Proof that a set of commitments t1, . . . , tτ open to messages m1, . . . ,mτ such that
∑

Bjmj = 0 mod q2.

– Special Soundness: Given two accepting transcripts one can extract valid openings z̄j, m̄j, c̄ of
tj for j ∈ [τ ] such that c̄ ∈ C̄, ‖z̄j‖ ≤ 2B′j, and

∑
Bjm̄j = 0.

Proof.

– Correctness: If P and V are honest then ‖(r1c, . . . , rτ c)‖ ≤ κ
√
d
∑
kj , the probability of abort

is exponentially close to 2/3 by definition of rejection sampling and lemma 2.2. Since each
coefficient of zj is statistically close to Dξ, then according to (12) we have ‖zj‖ ≤

√
2kjdξ with

overwhelming probability.

– Honest-Verifier Zero-Knowledge: We only show that the protocol is zero-knowledge when the
prover does not abort prior to sending zj . The reason that this is enough for practical purposes
is that HVZK Σ-protocols are first converted into non-interactive proofs via the Fiat-Shamir
transform, in which case the verifier never sees the aborting transcripts. One can also, using
the standard technique of sending commitments of wj,1,w

′
2 and only opening them in case a

non-abort occurs, make the interactive protocol zero-knowledge.
Let S(A, t1, . . . , tτ ,B1, . . . ,Bj) be the following PPT algorithm:

• Sample c← C
• Sample zj ← D

kj
ξ

• Set wj,1 = Aj,1zj − tj,1c

• Set w2 =
∑

BjAj,2zj − c
∑

Bjtj,2
• Output (w1,1, . . . ,wτ,1,w2, c, z1, . . . , zτ )
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It is clear that z1, . . . , zτ verifies with overwhelming probability. We know that in the real pro-

tocol when no abort occurs the distribution of zj is within statistical distance 2−100 of D
kj
ξ . As

w1,1, . . . ,wτ,1,w2 are completely determined by A1, . . . ,Aτ ,B1,Bτ , t1, . . . , tτ , z1, . . . , . . . , zτ , c,
the distribution of (w1,1, . . . ,wτ,1,w2, c, z1, . . . , zτ ) output by S is within 2−100 of the distribu-
tion of these variables in the actual protocol.

– Special Soundness: Let (w1,1, . . . ,wτ,1,w2, c, z1, . . . , zτ ) and (w1,1, . . . ,wτ,1,w2, c
′, z′1, . . . , z

′
τ )

be two accepting transcripts with c 6= c′. We will prove that there exists messages m̄j , j ∈ [τ ]
such that (zj − z′j , m̄j , c− c′) is a valid opening of tj , and

∑
Bjm̄j = 0. Let z̄j = zj − z′j , and

c̄ = c − c′. By computing the difference of the verification equations for both transcripts we
obtain:

Aj,1z̄j = t1c̄ (14)∑
BjAj,2z̄j = c̄

∑
Bjtj,2 (15)

Since c̄ has an inverse in Rq2 we can define m̄j ∈ R
lj
q2 such that c̄tj,2 = Aj,2z̄j + c̄m̄j . By

replacing c̄tj,2 in equation 15 we have: ∑
Bjm̄j = 0

In conclusion we have extracted z̄1, . . . , z̄τ , m̄1, . . . , m̄τ , and c̄ such that:

Aj z̄j + c̄

[
0

m̄j

]
= c̄tj

with ‖z̄j‖ ≤ 2B′j , and
∑

Bjm̄j = 0.

4.2 Proof of automorphism stability

We present in this section a proof of knowledge that a commitment opens to a message m ∈ Rlq2
that is invariant under a certain set of automorphisms (σj)j∈S⊂Z∗m , where the ring we consider is
R = Z [X] /Φm. As shown in section 3.1 as a special case we can show that m ∈ Zlq2 by proving that

it is invariant under a well chosen automorphism when m is prime or m = 2bpj for b ∈ {0, 1}, j > 0
and p an odd prime, or by proving that it is invariant under two automorphisms (specifically σ−1
and σ5) when m is a power of two. We can also prove that m belongs to certain sets of size qli for
specific integers i by proving it is invariant under a well-chosen set of automorphism, section 3.2
shows for which i this is possible and which set S ⊂ Z∗m should be used. We now show how to use
the previous proof to prove that for a set of automorphisms σj , j ∈ S a commitment t opens to
a message m such that ∀j ∈ S, σj(m) = m. For ease of presentation we will rewrite S as the set
{1, . . . , |S|} (while the previous section used S as the set of the powers corresponding to the Galois
automorphisms).
We consider a commitment

t := Ar +

[
0
m

]
with t ∈ Rnq1 ×R

l
q2 , A ∈ Rn×kq1 ×Rl×kq2 , and m ∈ Rlq2 . We will use the proof of Figure 1 with the

following parameters:
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– τ := |S|+ 1

– x := |S|
– A1 = A

– For j ∈ S, Aj+1 := σ−1j (A)

– t1 := t

– For j ∈ S, tj+1 := σ−1j (t)

– B1 :=

1
...
1

 ∈ R|S|×lq2

– For j ∈ S, Bj+1 :=

 0j−1

1

0|S|−j

 ∈ R|S|×lq2

– For j ∈ S, B′j = Baut

Corollary 4.2. Let r
$← Sk1 . Let S be a set of automorphisms of size |S|. Let t = Com(m; r) with

σj(m) = m for all j in S. Let ξ ≥ 11κ
√
k |S| d and Baut ≥

√
2dkξ. If Bcom ≥ 2Baut, then the

protocol of Figure 1 instantiated with the parameters set as above achieves the following properties:

– Correctness: The prover aborts with probability at most 2/3 + 2−100, and if he does not abort
the verifier accepts with overwhelming probability.

– Honest-Verifier Zero-Knowledge: Non-aborting transcripts with an honest verifier can be sim-
ulated with statistically indistinguishable distribution.

– Special Soundness: Given two accepting transcripts one can extract a valid opening z̄, m̄, c̄ of
t such that ‖z̄‖ ≤ 2Baut, and ∀j ∈ S, m̄ = σj(m̄).

Proof. Correctness and zero-knowledge follow directly from Lemma 4.1.
By the special soundness of Lemma 4.1 we have that given two accepting transcripts one can extract
valid openings z̄j , m̄j , c̄ of tj for j ∈ [τ ] such that ‖z̄j‖ ≤ 2B′j , and

∑
Bjm̄j = 0. Using how the

matrices Aj , j ∈ [τ ] are defined we obtain

c̄t = Az̄1 + c̄

[
0

m̄1

]
c̄σ−1j (t) = σ−1j (A)z̄j+1 + c̄

[
0

m̄j+1

]
,∀j ∈ S

By applying σj to the second equation we can rewrite it as

σj(c̄)t = Aσj(z̄j+1) + σj(c̄)

[
0

σj(m̄j+1)

]
, ∀j ∈ S

Since ‖σj(z̄j+1)‖ ≤ 2Baut ≤ BCom, we have by the binding property of the commitment scheme
that all these openings open to the same message, i.e.

m̄1 = σj(m̄j+1), ∀j ∈ S.
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Full signature Commitment Ciphertext Proof Secret key

Parameters I 581 KB 113 KB 123 KB 345 KB 146 KB

Parameters II 1173 KB 204 KB 254 KB 715 KB 292 KB

Table 4. Size of a signature and user secret key

Furthermore we know that
∑

Bjm̄j = 0 which by construction of the Bj corresponds to

m̄1 = m̄j+1,∀j ∈ S

from these two equality we have
m̄1 = σj(m̄1),∀j ∈ S.

In conclusion we have extracted z̄1, m̄1, and c̄ such that:

c̄t = Az̄1 + c̄

[
0

m̄1

]
with ‖z̄1‖ ≤ 2Baut and m̄1 = σj(m̄1), ∀j ∈ S.

5 Group Signatures

We first recall the definitions and security model of group signatures. A group signature scheme
consists of a tuple of four algorithms (GSetup,Sign,Verify,Open):

– GSetup(1λ, 1N ):Takes as input the security parameter λ as well as the maximum number of
identities N . Outputs the group public key gpk, the group manager secret key gmsk, and the
secret keys of each identity sk1, . . . , skN .

– Sign(ski,M) : Takes as input a user secret key ski and a message M ∈ {0, 1}∗. Outputs a
signature z of M .

– Verify(gpk,M, z) : Takes as input the group public key gpk, a message M , and a signature z.
Outputs 1 if z is a valid signature of M and 0 otherwise.

– Open(gmsk,M, z) : Takes as input the group manager secret key gmsk, a message M , and a
valid signature z of M . Outputs an identity id ∈ [N ] or ⊥.

For correctness, we want that for any (gpk, gmsk, sk1, . . . , skn) ← GSetup(1λ), any j ∈ [N ],
M ∈ {0, 1}∗, and z ← Sign(gpk, skj ,M), with overwhelming probability:

Verify(gpk,M, z) = 1, and Open(gpk, gmsk,M, z) = j

The security of the group signature is captured by two notions: anonymity and traceability, we
describe these notions informally, for a more formal approach see [BMW03]. For anonymity we
consider a PPT adversary A who has access to all the signing keys sk1, . . . , skN but not the
manager secret key gmsk. A chooses a message M and two identities i0 and i1, his goal is to
distinguish between signatures of M under these identities. There are multiple flavors of anonymity
depending on whether A can access an opening oracle (full anonymity) or not (weak anonymity),
intuitively full anonymity will be achieved when the PKE used in the opening is CCA-secure while
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Parameter Notation Params I Params II

Ring dimension d 4096 8192

Commitment
modulus (“Top”)

q1 ∼ 230 ∼ 220

Commitment
modulus (“Bottom”)

q2 ∼ 280 ∼ 280

Commitment row
dimension (“Top”)

n 1 1

Commitment
message dimension

l 1 1

Verifiable encryption
plaintext module

p ∼ 227 ∼ 227

Verifiable encryption
ciphertext module

Q ∼ 260 ∼ 262

Bound on the
challenge space

κ 26 24

Standard deviation
of the GPV trapdoor

s ∼ 249 ∼ 250

Standard deviation
of the NTRU

trapdoor
r ∼ 242 ∼ 242

Root-Hermite Factor δ0 1.0036 1.002

Security in space for
sieving (bits)

93 207

Post-Quantum
Security in time for
enumeration (bits)

242 1084

Table 5. Concrete parameters for our Group signature

weak anonymity corresponds to a CPA-secure encryption scheme. In this paper, for simplicity, we
present a weakly anonymous group signature but mention that the verifiable encryption scheme we
use [LN17] can achieve CCA security, which would end up somewhat increasing the signature size
(by ≈ 20% in our case). For the full-traceability notion, the adversary A has access to the signing
keys (ski)i∈S for any arbitrary set S ⊂ [N ] (possible S = [N ]) as well as the manager secret key
gmsk, his goal is to produce a valid signature z of some message M (i.e. which passes verification)
such that either Open(gpk, gmsk,M, z) = j /∈ S or Open(gpk, gmsk,M, z) = ⊥. Full-traceability
captures the notion that all signatures, even when computed by a collusion of users and the group
manager, should trace to a member of the forging coalition. Note that full-traceability implies
unforgeability, since the forgery game is a special case of the full-traceability game with S = ∅.
Here the condition Open(gpk, gmsk,M, z) = j /∈ S = ∅ or Open(gpk, gmsk,M, z) = ⊥ is vacuous.

5.1 The Scheme

The group signature we present in this section will be for fixed parameters as per Table 5, for
which the signatures will be of size 581 KB, as described in Section 8. In particular we consider the
power-of-two cyclotomic ring R = Z [X] /X4096 + 1, and identity set [N ] = Zq2 . This entails that
user identities are exactly the elements x ∈ Rq2 that are left invariant under the automorphisms
σ−1 : X → X−1 = −Xd−1 and σ5 : X → X5. We also use commitments that rely on R-LWE
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and R-SIS (which can be seen as specific instances of the module variant of the corresponding
problems for modules of dimension 1). Using other cyclotomic rings can result in smaller signatures
(especially since for some of them only one automorphism is needed to prove that elements belong
to Zq2), and using higher dimension commitments that rely on the module variants of LWE and
SIS would allow for more fine-tuned parameters. We have chosen the parameters in this section as
such for easier presentation and because they allow for simpler implementations.
We will first present in this section a group signature scheme without opening, and show in sec-
tion 5.2 how to add an opening.
Let δ =

⌈√
q2
⌉
, and gT be the gadget matrix

[
1 δ
]
∈ R1×2

q2 , we will consider the set of identities
Id = Zq2 .

GSetup(1λ):

– Sample A :=

[
aT1
aT2

]
← CSetup(1λ), with a1 ∈ R3

q1 , and a2 ∈ R3
q2 .

– Sample a
$← R2

q2 .

– Sample R
$← S2×2

1 and set bT = aTR ∈ R1×2
q2 .

– Sample (s01 , s02 , s03)← D2
s ×D2

s ×D3
r

– Set u :=
[
aT | bT | aT2

] s01
s02
s03


– Set gpk := (A,a,b, u)
– For i ∈ Z∗q2 , sample si3 ← D3

r

– For i ∈ Z∗q2 , sample (si1 , si2) ∈ R4 s.t[
aT | bT + igT

] [si1
si2

]
= u− aT2 si3 , and (si1 , si2)← D4

s

– For i ∈ Zq2 , set ski := si := (si1 , si2 , si3)

Intuitively user i could sign a message M ∈ {0, 1}∗ by doing a non-interactive proof that he knows
a small s ∈ R7 such that

[
aT | bT + igT | aT2

]
s = u in which the message is part of the hash that

generates the challenge. However doing so would reveal his identity – a verifier would need to know
the matrix

[
aT | bT + igT | aT2

]
to verify the signature and since a, a2, b, and g are public, he

could recover the identity of the signer. As explained in section 1.2, we circumvent this issue by
committing to the part of the matrix that depends on i (that is igT ) and proving knowledge of a
solution to a related equation.

Sign(M, si):

– Set t :=

[
t1
t2

]
= Com(i, r) ∈ Rq1 ×Rq2 , where r← S3

1 .

– Set t′ :=

[
t′1
t′2

]
= Com(iδ, r′), where r′ ← S3

1 .

– Set vT :=
[
aT | bT +

[
t2 t
′
2

]
| aT2

]
∈ R1×7

q2 , and s′ =

 si1
si2

si3 −
[
r r′
]
si2

 ∈ R7, observe that

vT s′ = u
– In parallel (see below for explanation):
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• Compute a proof Π1 that t, t′ open to messages m,m′ such that m′ = δm
• Compute a proof Π2 that t opens to a message m such that m = σ−1(m) = σ−5(m)
• Compute a proof Π3 of knowledge of s′ such that vT s̄ = u

– Output the signature z = (t, t′, Π1, Π2, Π3)

The proofs Π1, Π2, Π3 will use the Fiat-Shamir heuristic to transform the interactive proofs of Sec-
tion 4 into non-interactive proofs in the random oracle model, we will also include the message M
in the random oracle call to obtain a signature. For extraction, we will need all of these proofs to be
executed with the same challenge (or output of the hash function in the non-interactive version).
This is done in the standard way with the signer running all three proofs in parallel and, in the
non-interactive version, computing a common challenge for all three as a hash of all the relevant
information. We describe the full non-interactive proof, including the opening, in more details in
Section 7.
To verify a signature one simply verifies the proofs Π1, Π2, Π3.

Verify(t, t′, Π1, Π2, Π3):

– Let

[
t1
t2

]
:= t

– Let

[
t′1
t′2

]
:= t′

– Let vT =
[
aT | bT +

[
t2 t
′
2

]
| aT2

]
– Verify Π1 using t, t′, δ
– Verify Π2 using t, σ−1, σ5
– Verify Π3 using v

5.2 Adding the Opening

To be able to open the group signature scheme of Section 5.1 we will add a verifiable encryption to
the signature. In essence we want the signer to encrypt his identity, using a public key associated
to a decryption key that the group manager possesses, and prove that this encryption is indeed of
his identity. To do so we will encrypt the randomness r of t = Com(id; r) and prove that aT1 r = t1,
note that encrypting id directly would result in a smaller ciphertext but a very large proof since id
itself is not small. We use the verifiable encryption of [LN17] which consists in a R-LWE encryption
and a proof of knowledge. We let p be the modulus of the plaintext space of our encryption scheme
(which we only need large enough to accommodate the decryption slack, see [LN17]) and Q the
modulus of the ciphertext.

PKESetup(1λ):

– Sample a
$← RQ

– Sample s, e← S3
1

– Set b := as + e ∈ R3
Q

– Output (s, (a,b))

Encryption will consist in creating a standard R-LWE encryption and a proof that the message r
encrypted is the randomness in t = Com(id; r).

Enc((a,b), r, t1):
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– Sample r, e1 ← S1
– Sample e2 ← S3

1

– Set u := p(ar + e1)

– Set v := p(br + e2) + m

– Set B1 :=


pa p 0 0 0 0 0 0
pb1 0 p 0 0 1 0 0
pb2 0 0 p 0 0 1 0
pb3 0 0 0 p 0 0 1

 ∈ R4×8
Q

– Set B2 :=
[
01×5 aT1

]
∈ R1×8

q1

– Set B :=

[
B1

B2

]

– Set x :=


r
e1
e2
r

 ∈ R8

– Set y :=

uv
t1

 ∈ R4
Q ×Rq1

– Compute a proof Π of knowledge of x such that Bx = y.

– Output (u,v, Π)

To verify an encryption one simply verifies the proof Π.

Verify((u,v, Π), t1) :

– Set B1,B2,B,y as in Enc above.

– Output Verify(Π,B,y)

Decryption is not as simple as standard R-LWE decryption. By completeness we know that hon-
estly generated ciphertexts can be decrypted but soundness should guarantee that as long as the
proof verifies one should be able to decrypt. This is not clear since the proof Π does not imply that
(u,v) is a valid ciphertext but that there exists some c̄ ∈ C̄ such that (c̄u, c̄v) is a valid ciphertext
and we do not know which one. In [LN17] the authors show that in fact trying random c̄ is a valid
approach and the expected number of attempts is the same as the expected number of oracle calls
that are needed to generate the proof (in particular only one attempt is necessary if the prover is
honest). This will be sufficient for our scheme.

Dec((u,v, Π), s) :

– If Verify((u,v, Π), t1) = 1, Let c be the challenge used in Π

– Loop:

– c′ ← C
– c̄ := c− c′
– r̄ := (v − us)c̄ mod Q

– If ‖r̄‖∞ ≤ Q/8κ then:

– r̄ := r̄ mod q

– return (r̄, c̄)

24



The following lemma shows that if decryption succeeds then the decrypted value (r̄, c̄) will essen-
tially be a preimage for the zero-knowledge proof.

Lemma 5.1 ([LN17] Lemma 3.1). Let sk = s, and e be the error in b = as + e. If for given

(u,v, t1) ∈ R4
Q ×Rq1

there exists r̄B := (r̄, ē1, ē2, r̄) ∈ R8, and c̄ ∈ R such that :

BrB =

u mod Q
v mod Q
t1 mod q1


and

‖p(ūe + ē2 − ēs) + r̄‖∞ ≤ Q/4κ (16)

Then for (r̄′, c̄′) = Dec(u,v, Π, t1), we have:

r̄

c̄
mod p =

r̄′

c̄′
mod p

Once we have verifiable encryption, adding traceability to our group signature is straightforward.
During key generation we will create (pk, sk) ← PKESetup(1λ), add pk to the group public key
and set gmsk = sk. When signing a user will compute an encryption v of his randomness r, which
is such that aT1 r = t1 mod q1, and add v to the signature. For verification one only needs to check
the extra proof Π. We consider how to open a signature, this is not completely straightforward
because soundness only guarantees that a verifying signature will open to c̄r for some c̄ ∈ C̄.
Open(msk, z) :

– Parse z as (t, t′, Π1, Π2, Π3, v)

– Let (r̄, c̄) =Dec(msk, t1, z)

– Set id := c̄−1(t2 − aT2 r̄) ∈ Rq2
– If id ∈ Zq2 then output id, otherwise output ⊥

Note that if decryption succeeds then the proof Π verifies, which entails that there exists r̄′, c̄′

such that aT1 r̄′ = c̄′t1 mod q1 and by lemma 5.1 we know that:

r̄

c̄
mod p =

r̄′

c̄′
mod p

if we multiply this equation by c̄ and c̄′ we have that r̄′c̄ = r̄c̄′ mod p, and since both sides are
smaller than p this equation will be true over the integer. From which we get:

aT1 r̄ = c̄t1 mod q1

which entails that if t = (t1, t2) is a well formed commitment the identity returned by the Open
algorithm will be its message.
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6 Security Proofs

6.1 Security of The Commitment

Lemma 6.1 (Binding). Let κ ≥ max
c∈C

(‖c‖1). If there is an adversary A who can output a commit-

ment t with two valid openings (m, r, c) and (m′, r′, c′) such that m 6= m′ with probability ε, then
there is an algorithm A′ who can break M -SISq1,n,m,4κBCom in the same time and with advantage
ε.

We prove the hiding property for a slightly modified variant of our commitment scheme in which

the error is sample according to Dn
ξ′×D

k−n
ξ , where ξ′ =

√
q2
q1
ξ + 1 + 2d(k − n− l)ξ2. This difference

is mostly an artefact of the modulus switching used in the proof. We use the distribution Sk1 in our
paper as it makes for easier analysis and implementation and does not entail better attacks.

Lemma 6.2 (Hiding). For any m,m′ ∈ Rlq2, if there is an adversary A who can distinguish
between Com(m) and Com(m′) with advantage ε, then there exists an algorithm A′ who runs in
the same time and breaks M -LWEq2,m−n−l,ξ with probability ε/2.

Proof. Given an instance (B,y) ∈ R(n+l)×(m−n−l)
q2 × Rn+lq2 of M-LWEq2,m−n−l,ξ, parse B and y

as

[
B1

B2

]
and

[
y1

y2

]
. Let ρ : R → Z be a randomized rounding function which maps x ∈ R to

ρ(x) ← bxc + Bx−bxc, where Bx−bxc is a Bernouilli variable which outputs 1 with probability

x− bxc. Remark that for q1 ≤ q2, ρ
(
U( q1q2Zq2)

)
= U(Zq1). Let B′1 := ρ

(
q1
q2

B1

)
and y′1 := ρ( q1q2 y1).

A′ samples R
$← Rn×lq1 and sets:

A :=

[
In R

0l×n Il

]
·
[

In 0n×l B′1
0l×n Il B2

]
where the products are done over the integers and then taken modulo q1 for the top part and modulo
q2 for the bottom part. A′ sends A to the adversary A and receives messages m0,m1 ∈ Rlq2 such

that m0 6= m1. A′ samples b
$← {0, 1}, computes:

t =

[
In R

0l×n Il

] [
y′1
y2

]
+

[
0

mb

]
where the products are done over the integers and then taken modulo q1 for the top part and
modulo q2 for the bottom part, and sends t to A. When A returns b′, A′ returns 1 if b′ = b and 0
otherwise.
We first show that the public commitment matrix A is taken according to the correct distribution.
We have:

A =

[
In R B′1 + RB2

0l×n Il B2

]
Since B′1 is uniform modulo q1 and independent from R and B2, B′1 + RB2 mod q1 is uniform
modulo q1. Since R and B2 are also uniform, the distribution of A is identical to the one output
by CSetup.
If y is uniform in Rn+lq2 then y′1 is uniform in Rnq1 and t is uniform in Rn+lq1 and b′ = b with
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probability exactly 1/2. However if y =
[
In+l B

]
r, write r as

r1
r2
r3

, with r1 ∈ Rn, r2 ∈ Rl, and

r3 ∈ Rm−n−l. Applying ρ component-wise to q1
q2

(B1,B1r3 + r1) we get:(
q1
q2

B1 +∆,
q1
q2
B1r3 +

q1
q2

r1 + δ

)
=

(
q1
q2

B1 +∆,

(
q1
q2
B1 +∆

)
r3

+
q1
q2

r1 + δ −∆r3

)
=

(
B′1,B

′
1r3 +

q1
q2

r1 + δ −∆r3

)
=
(
B′1,B

′
1r3 + r′1

)
where r′1 is subgaussian with parameter

√
q1
q2
α+ 1 + ‖r3‖2 ≤ ξ′. Setting r′ =

r′1
r2
r3

 we have that

t = Ar′ +

[
0

mb

]
is distributed according to Com(mb), and A will output b′ = b with probability 1/2+ε. A′ therefore
has advantage ε/2 in the M-LWEq2,m−n−l,ξ problem.

6.2 Security of the Scheme

Lemma 6.3 (Anonymity). Let A be a PPT adversary. Let AdvHidA (λ) be the advantage of A over

the Hiding property of the commitment scheme. Let Advind−cpaA (λ) be the advantage of A over the
IND-CPA property of the encryption scheme. The advantage of A against the CPA-anonymity of
our group signature is at most:

AdvanonA (λ) ≤ 2AdvHidA (λ) + Advind−cpaA (λ) + 2−λ

Proof. We use a succession of games.
Game G0 : In this game the challenger runs GSetup honestly and gives (gpk, sk1, . . . , skN ) to A.

A outputs a message M∗ and two identities i0, i1 ∈ [N ]. The challenger chooses a bit b
$← {0, 1}

and computes z∗ := (t, t′, e, π)← Sign(M∗, skib)
Game G1 : In this the challenger uses the simulator of the proofΠSign when queried for Sign(M∗, skib).
This game is statistically indistinguishable from the previous by the zero-knowledge of ΠSign.∣∣∣AdvG1

A − AdvG0
A

∣∣∣ ≤ 2−λ

Game G2 : In this the challenger replaces the commitment t by a commitment of 0 when answering
the query Sign(M∗, skib). The proof ΠSign can still be used since it uses the simulator, and this
game is indistinguishable from the previous one by the hiding property of the commitment.∣∣∣AdvG2

A − AdvG1
A

∣∣∣ ≤ AdvHidA (λ)
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Game G3 : In this the challenger replaces the commitment t′ by a commitment of 0 when answering
the query Sign(M∗, skib). This game is indistinguishable from the previous one by the hiding
property of the commitment. ∣∣∣AdvG3

A − AdvG2
A

∣∣∣ ≤ AdvHidA (λ)

Game G4 : In this the challenger replaces the commitment ciphertext e with an encryption of 0.
Since the proof ΠSign uses the simulator it is independent of the decryption of e. This game is
indistinguishable from the previous one by the IND-CPA property of the encryption scheme.∣∣∣AdvG4

A − AdvG3
A

∣∣∣ ≤ Advind−cpaA (λ)

The signature (t, t′, e, π) output in Game G3 is independent of ib and the adversary has thus
probability 1/2 of outputting b′ = b. We obtain the desired result by summing the advantages.

We will prove traceability in two steps. We will first prove that an adversary A cannot distinguish
between the regular traceability game and the traceability game in which the setup algorithm
has been replaced by GSetup∗ which we define below. We will then prove that a challenger B can
extract an M-SIS solution from an adversary who succeeds in producing a forgery in the traceability
game with GSetup∗.
GSetup∗(1λ):

– Sample i∗
$← Zq2

– Sample A :=

[
aT1
aT2

]
← CSetup(1λ), with a1 ∈ R3

q1 , and a2 ∈ R3
q2 .

– Sample a
$← R2

q2 .

– Sample R
$← S2×2

1 and set bT = aTR ∈ R1×2
q2 .

– Sample (si∗1 , si∗2 , si∗3)← Ds ×Ds ×Dr

– Set u :=
[
aT | bT | aT2

] si∗1
si∗2
si∗3


– Set gpk :=

(
A,a,b− i∗gT , u

)
– For i ∈ Zq2 \ {i∗}, sample si3 ← D3

r

– For i ∈ Zq2 \ {i∗}, sample (si1 , si2) ∈ R4 s.t[
aT | bT + (i− i∗)gT

] [si1
si2

]
= u− aT2 si3 , and (si1 , si2)← D4

s

– For i ∈ Zq2 , set ski := si := (si1 , si2 , si3)

We consider the following advantages for an adversary A

– AdvtraceA (λ) the advantage of A in the traceability game.
– Advtrace∗A (λ) the advantage of A in the traceability game where GSetup is replaced with

GSetup∗.
– AdvNTRUA (λ) the advantage of A in solving the NTRUq,r problem.

– AdvMLWE
A (λ) the advantage of A in solving the M-LWEq,1,s problem.

Lemma 6.4. The advantage of any PPT adversary A against the traceability game of the group
signature is at most:

AdvtraceA (λ) ≤ 2(AdvNTRUA (λ) + AdvMLWE
A (λ)) + Advtrace∗A (λ)
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Proof. We use a succession of games.
Game G0: The challenger B runs the Group signature protocol honestly. He gives (ski)i∈S as well
as gmsk to A who has advantage ε in the traceability game.

AdvG0
A = AdvtraceA

Game G1: B samples aT2 as [0 | 1 | f/g] where f, g ∈← Dr are taken as in Section 2.6. G2 is
indistinguishable from G1 under the NTRUq,r assumption.∣∣∣AdvG1

A − AdvG0
A

∣∣∣ ≤ AdvNTRUA

Game G2: B sets bT
$← R1×2

q2 . Note that if bT 6= aTR, B can no longer use the GPV trapdoor

of
[
aT | bT + igT

]
to sample secret keys for user i. To generate keys for i he will instead sample

si1 , si2 ← D2
s and use his NTRU trapdoor on a2 to sample si3 . This game will be indistinguishable

from the previous one by the hardness of M-LWEq,1,s (since aTR is two M-LWEq,1,s samples).∣∣∣AdvG2
A − AdvG1

A

∣∣∣ ≤ AdvMLWE
A

Game G3: B replaces bT with b∗T := bT − i∗gT . Since bT is uniform this game is identical to the
previous one.

AdvG3
A = AdvG2

A

Game G4: B sets b∗T := aTR− i∗gT . This game is indistinguishable from the previous one under
M-LWEq,1,s. ∣∣∣AdvG4

A − AdvG3
A

∣∣∣ ≤ AdvMLWE
A

Game G5: B sets aT2 as [0 | 1 | a2], with a2
$← Rq2 and uses the GPV trapdoor of

[
aT | bT + (i− i∗)gT

]
to sample secret keys for user i. This game is indistinguishable from the previous one under the
NTRUq,r assumption. ∣∣∣AdvG5

A − AdvG4
A

∣∣∣ ≤ AdvNTRUA

Note that Game G5 is the traceability game that uses GSetup∗ (simply by renaming s0 to si∗),
the result follows.

Lemma 6.5. Let A be a PPT algorithm with advantage ε in the traceability game with GSetup∗.
Let h be a bound on the number of hash queries made by A. Let BS ≥ 4κB1 + 12κ

√
dB1 + 2κB2 +

6
√
dξB1 +κ2(1+3

√
d)2
√
ds+κ2

√
6ds. There exists B a challenger for the M-SISq2,1,4,BS such that:

AdvMSIS
B (λ) ≥ ε

q2

( ε
h
− 2−λ

)
Proof. Formally B is given a matrix xT :=

[
x1, x2, x3, x4

]
∈ R4

q2 and must output y s.t xTy = 0

mod q2 and ‖y‖ ≤ BS , w.l.o.g we consider x =
[
x1, x2, x3, 1

]
instead since with high probability

one of the xi will have an inverse.
B will set a := (x1, x2) and aT2 := (0, 1, x3) during setup, since x1, x2, x3 are uniform in Rq2 this
does not change the distribution of GSetup∗. When asked signing queries, B runs the signing
algorithm honestly, when asked corrupt queries B outputs the corresponding secret key. Suppose
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the adversary A outputs a forgery z := (t, t′, Π, (u,v)) by programming the random oracle with
two different challenges B will be able to extract z̄ ∈ R3, īd ∈ Zq2 , z̄′ ∈ R3, z̄s ∈ R7, z̄B ∈ R8,
c̄ ∈ C̄ such that:

c̄t = Com(c̄īd; z̄)

c̄t′ = Com(c̄īdδ; z̄′)

c̄

uv
t1

 = Bz̄B

c̄u = vT z̄s

such that ‖(z̄, z̄′, z̄B)‖ ≤ 2B ∧ ‖z̄1, z̄2‖ ≤ 2B1 ∧ ‖z̄3‖ ≤ 2B2, with (z̄1, z̄2, z̄3) := z̄. Using the
forking lemma of [BN06], B will be able to do this with probability at least ε

(
ε
h − 2−λ

)
. Let

(r̃, c̃) :=Dec(u, v), the parameters set in section 8 are such that, by soundness of the verifiable
encryption scheme, with overwhelming probability r̃c̄ = z̄c̃ over the integers, which implies that
Open(z) ∈ Zq2 i.e. the forgery opens to an identity in Zq2 and not ⊥.
Since i∗ is taken uniformly at random in GSetup∗, z will open to this identity with probability
1/q2. Suppose that z opens to i∗. Then

c̄t2 = aT2 z̄ + c̄i∗

c̄t′2 = aT2 z̄′ + c̄i∗δ[
aT | bT + [t2 | t′2]− i∗gT | aT2

]
z̄s = c̄u

If we multiply the third equation by c̄ and replace c̄[t2 | t′2] we get:[
c̄aT | c̄bT + [aT2 z̄ | aT2 z̄′] | c̄āT2

]
z̄s = c̄2u

Let

z̃ =

[
c̄z̄1 + Rc̄z̄2
c̄z̄3 −

[
z̄ z̄′
]
z̄2

]
Then [

aT | āT2
]
z̃ = c̄2u

Since A has to output a valid forgery this means that he has never obtained the key ski∗ , we can
thus consider that si∗ was sampled after receiving the forgery, conditioned on

[
aT | b | aT2

]
si∗ = u.

Let s∗ :=
[
si∗1 + Rsi∗2 | si∗3

]
, the probability that c̄s∗ = z̃ is negligible. Finally we have a solution

z̃− c̄s∗ to the M-SIS problem defined by
[
aT | aT2

]
. Using the bounds on the extracted values and

the distribution of s∗ we have the following bound on the norm of the solution:

‖z̃− c̄s∗‖ ≤ ‖z̃‖+ 2κ ‖s∗‖

≤ 2κ ‖z1‖+ 6κ
√
d ‖z̄2‖+ κ ‖z̄3‖+ 3

√
dξ ‖z̄2‖

+ κ2(1 + 3
√
d)(2
√
ds) + κ2

√
6ds

≤ 4κB1 + 12κ
√
dB1 + 2κB2 + 6

√
dξB1

+ κ2(1 + 3
√
d)2
√
ds+ κ2

√
6ds

The largest terms in this solution are by far 2κB2 and 6
√
dξB1 which we will consider when setting

the parameters in section 8.
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7 The Full Non-Interactive Proof

We give the full non-interactive zero-knowledge proof that the signer will output. We only consider
the parameter choice made in section 8. The user i ∈ Zq2 will use the following elements for his
proof:

t :=

[
t1
t2

]
= Ar +

[
0
i

]
∈ Rq1 ×Rq2

t′ :=

[
t′1
t′2

]
= Ar′ +

[
0
iδ

]
∈ Rq1 ×Rq2

vT =
[
aT | bT +

[
t2 t
′
2

]
| aT2

]
∈ R1×7

q2

s′ =

 si1
si2

si3 −
[
r r′
]
si2

 ∈ R7

We first note that since aT2 =
[
0 1 a′2

]
, we can ignore the 5th coefficient of vT (corresponding to 0)

in vT s′ = u and thus consider vT ∈ R1×6
q2 and s′ ∈ R6 such that vT s′ = u. The gain in proof size

obtained by discarding one element of this equation may seems negligible at first but it is in fact
rather important because the last three coefficients of s′ will be much larger than the other four.
We also recall the matrices needed for the proof of verifiable encryption:

B1 =


pa p 0 0 0 0 0 0
pb1 0 p 0 0 1 0 0
pb2 0 0 p 0 0 1 0
pb3 0 0 0 p 0 0 1

 ∈ R4×8
Q

B2 =
[
01×5 aT1

]
∈ R1×8

q1

B =

[
B1

B2

]
Which are such that :

BrB =


u mod Q
v1 mod Q
v2 mod Q
v3 mod Q
t1 mod q1

 , for rB =


r
e1
e2
r


An important point for proof size will be rejection sampling. After doing rejection sampling
Rej(z,a, ξ) on a vector z we know by lemma 2.2 that all of its coefficients will be statistically
close to Dξ with ξ ≥ 11 ‖a‖, meaning that for very imbalanced vectors it would be worthwhile
to do rejection sampling multiple times. For example if a = (a1,a2) with ‖a2‖ >> ‖a1‖ then
by doing two rejection samplings Rej(z1,a1, ξ1) and Rej(z2,a2, ξ2) one obtains a smaller vector
z = (z1, z2) at the cost of having acceptation probability 1/9, since the proof is non-interactive
aborts have a minimal impact and this approach can help reduce the proof size significantly. We
will use two rejection samplings for s′ ∈ R6 in which the last two coefficients will be much larger
than the other four (because they correspond to a product of si and r, r′). We will thus write s′ as
s′ = (s′1, s

′
2) ∈ R4 ×R2. We can now write the full zero-knowledge proof of the verifier.
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Algorithm 2 ΠSign

Require: Message M ∈ {0, 1}∗.
Public information: t, t′,vT ,B, δ =

⌊√
q
⌉
, σ−1, σ5.

Private information: r, r′, i, s′, rB
1: y,y′,y−1,y5 ← D3

ξ

2: yB ← D8
ξ

3: ys1 ← D4
ξ1

4: ys2 ← D2
ξ2

5: ys = (ys1 ,ys2)
6: w1 := aT1 y
7: w′1 := aT1 y

′

8: w1,−1 := σ−1(aT1 )y−1

9: w1,5 := σ5(aT1 )y5

10: w2 := δaT2 y − aT2 y
′

11: w2,−1 := aT2 y − σ−1(a2)y−1

12: w2,5 := aT2 y − σ5(a2)y5

13: ws := vTys
14: wB := ByB
15: c := H(t, t′,v,B, δ, σ−1, σ5,w1,w

′
1,w1,−1,w1,5,w2,w2,−1,w2,5,ws,wB ,M)

16: z := rc+ y
17: z′ := r′c+ y′

18: z−1 := σ−1(r)c+ y−1

19: z5 := σ5(r)c+ y5

20: zs1 := s′1c+ ys1
21: zs2 := s′2c+ ys2
22: zB := rBc+ yB
23: if Rej((z, z′, z−1, z5, zB), (rc, r′c, σ−1(r)c, σ5(r)c, rBc), ξ)∧ Rej(zs1 , s

′
1c, ξ1)∧Rej(zs2 , s

′
2c, ξ2) then

24: Output z = (z, z′, z−1, z5, zs1 , zs2 , zB , c)
25: else
26: Restart
27: end if

Algorithm 3 Verify
Require: Message M ∈ {0, 1}∗.

Signature Π = (z, z′, z−1, z5, zs1 , zs2 , zB).
Public information: t, t′,vT ,B, δ =

⌊√
q
⌉
, σ−1, σ5.

1: w1 := aT1 z− t1c
2: w′1 := aT1 z

′ − t′1c
3: w1,−1 := σ−1(aT1 )z−1 − σ−1(t1)c
4: w1,5 := σ5(aT1 )z5 − σ5(t1)c
5: w2 := δaT2 z− aT2 z

′ − (δt2 − t′2) c
6: w2,−1 := aT2 z− σ−1(aT2 )z−1 − (t2 − σ−1(t2)) c
7: w2,5 := aT2 z− σ5(aT2 )z5 − (t2 − σ5(t2)) c
8: ws := vT zs − uc
9: wB := BzB − (v, v1, v2, v3, t1)c ∈ R4

Q ×Rq1
10: if ‖(z, z′, z−1, z5, zB)‖ ≤ B ∧ ‖zs1‖ ≤ B1 ∧ ‖zs2‖ ≤ B2

and c = H(t, t′,v,B, δ, σ−1, σ5,w1,w
′
1,w1,−1,w1,5,w2,w2,−1,w2,5,ws,wB ,M) then

11: Output 1
12: else
13: Output 0
14: end if
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Lemma 7.1. Let r, r′ ← S3
1 , let si1 , si2 ← D2

s , let si3 ← D3
r , let u, v1, v2, v3 ← S1. Let t, t′,v, s′,B, rB

be defined as previously. Let ξ ≥ 11κ
√

20d, ξ1 ≥ 11κ
√

8ds, ξ2 ≥ 11κ(d
√

24s +
√

2dr) and B ≥
2
√

10dξ, B1 ≥ 2
√

2dξ1, B2 ≥ 2
√
dξ2. If Bcom ≥ 2B, then the algorithm Πsign achieves the follow-

ing properties:

– Correctness: The prover restarts with probability at most 1/27 + 2−100, and if he does not abort
the verifier accepts with overwhelming probability.

– Honest-Verifier Zero-Knowledge: Signatures can be simulated with statistically indistinguishable
distribution.

– Special Soundness: Given two accepting transcripts one can extract z̄ ∈ R3, īd ∈ Zq2, z̄′ ∈ R3,
z̄s ∈ R7, z̄B ∈ R8, c̄ ∈ C̄ such that:

c̄t = Com(c̄īd; z̄)

c̄t′ = Com(c̄īdδ; z̄′)

c̄


u
v1
v2
v3
t1

 = Bz̄B

c̄u = vT z̄s

such that ‖(z̄, z̄′, z̄B)‖ ≤ 2B ∧ ‖z̄s1‖ ≤ 2B1 ∧ ‖z̄s2‖ ≤ 2B2.

Proof. The proof is simply a combination of the proofs for Lemma 4.1 and Corollary 4.2.

8 Parameters and Implementation

8.1 Fixing the Parameters

We will set the parameters as per Table 5. In this section we discuss the bounds that must be
verified by these parameters and the resulting security guarantees. We will consider the security of
our scheme in terms of ”root-hermite factor” δ0 which is a parameter often used when assessing the
security of lattice-based schemes. In this section we will aim for a root-hermite factor δ0 = 1.0036.
Such a factor implies at least 93-bit (post-quantum) space hardness or 242-bit time hardness (and
significantly smaller space-hardness) depending on which lattice reduction strategy one uses.

First we fix the dimension to d = 4096, we use this dimension as anything smaller does not
allow the existence of parameters that make our scheme secure. For this dimension the challenge
set {c ∈ R : ‖c‖1 = κ, ‖c‖∞ = 1} will be of size greater than 2256 if we fix κ = 26.

The standard deviations s and r are fixed by the quality of our trapdoors to s = 6
√
dq2 and

r = 2 · 1.17
√
q2.

To fix q1 we consider the requirements on the binding property of our commitment. From
Section 5 we have that the M-SISq1,1,3,4κB problem has to be hard for vectors of norm 4κB =
88 · κ2 · d

√
200. For q1 ≈ 230, as in table 5, we obtain δ0 = 1.0036.

To fix q2 we will need the M-SISq2,1,4,BS for BS as per lemma 6.5 to be hard. We can compute that
BS = ‖z̃− s∗‖ ≈ 180224 ·

√
2 · d2 · √q2 for q2 ≈ 280 as in table 5 the root-hermite factor of this

problem will be δ0 = 1.0036.
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The value of q2 also affects the hardness of the hiding property of our commitment scheme. For
this, we need that R-LWE is hard for dimension d, errors sampled in S1 and both modulus q1 and
q2. In practice the best attack will be to either solve R-LWE modulo q1 or modulo q2. Since we will
have q2 > q1 and the hardness of R-LWE decreases as the modulus increases, we will only consider
q2 as being relevant here. For the parameters in table 5 we have δ0 = 1.0036 for R-LWE with modulo
q2, which is set intentionally to be the same as the root-hermite factor for the M-SIS problem above.

The only constraint we have on p, the plaintext modulus of our verifiable encryption scheme, is
that if r̄c̃ = r̃c̄ mod p for some r̄, c̄, r̃, c̃ extracted in ΠSign then this equation should hold over the
integers, i.e. ‖z̄c̃− z̃c̄‖∞ ≤ p/2. Since the vector z output in ΠSign will have coefficients distributed
according to Dξ, we will have with overwhelming probability that ‖z‖∞ ≤ 12ξ (we can add this as
an explicit check in the verification algorithm), in which case we will require p ≥ 4 · κ · 12ξ ≥ 226.5.
The ciphertext modulus Q will be fixed by equation 16 which gives:

Q ≥ 264
√

34κpd3/2 ≥ 259.5

We consider the proof size that results from this parameter choice. The secret key consists of 4
polynomials of standard deviation s and two polynomials of standard deviation r resulting in a size
of 4d log(12s) + 2d log(12r) = 154KB. The signature itself will consist of two commitments, one
ciphertext and one zero-knowledge proof, which are respectively of size:

2d log q1 + 2d log q2 = 113KB

4d logQ = 123KB

13d log(12ξ) + 4d log(12ξ1) + 2d log(12ξ2) = 345KB

8.2 Accounting For Complexity Leveraging

The proof for full-traceability of Section 6.2 reduces the security of our group signature to that of
a selectively secure signature. When guessing the identity of the forgery, we thus lose a factor of q2
in the success probability of the attacker. The hardness of SIS is usually evaluated by considering
exponential time/exponential space algorithms (sieving algorithms) since such algorithms have
the best asymptotic complexity. While complexity leveraging implies that the running time of a
successful SIS challenger is multiplied by q2 it should not be affected in terms of space complexity,
it is thus reasonable to consider the space complexity of the adversary as a lower bound on the
security of the scheme. To account for the loss in success probability we will also consider polynomial
space/exponential time algorithms (enumeration algorithms). For a root-hermite factor δ0 = 1.0036
enumeration estimates (e.g. [ACD+18,BCLvV]) give a post-quantum time complexity of 322 bits,
which when taking into account the loss of a factor q2 results in a security of 242 bits. For the sake of
completeness, we also give a very conservative second set of parameters in which the post-quantum
time and space complexity of sieving algorithms is above 128 bits even with complexity leveraging.
The dimension d = 4096 is no longer enough to reach such a security and we will thus be forced
to set d = 8192. For this dimension the M-SISq2,1,3,BS has a root hermite factor of δ0 = 1.002,
corresponding to a security of 207 bits in space and 262 bits in time for post-quantum security
using sieving (the post-quantum time security when considering enumeration is of 1084 bits with
leveraging). The R-LWE problem in dimension d = 8192 has a root-hermite factor of less than
1.0019 resulting in more than 300 bits of security, similarly the M-SISq1,1,3,4κB becomes harder
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with a higher dimension and q1 can be reduced accordingly. The rest of the parameters will be
changed to the values given in Table 5, resulting in a signature size of (c.f. Table 4).

8.3 Implementation

We have implemented the group signature scheme in the C programming language. For the preimage
sampling during key generation we use the Fast Fourier version [DP16] of the randomized nearest
plane algorithm [GPV08] adapted to cyclotomic rings. This was done before in the Falcon signature
scheme [PFH+18]. We also use the FFT-based algorithm from [DP16] adapted to cyclotomic rings
to compute the compact LDL∗ decomposition of the trapdoor basis. Contrary to Falcon, double
floating point precision does not suffice in our case. For the necessary multiprecision complex
arithmetic we use the library MPC [EGTZ18] based on MPFR [FHL+07] and GMP [Gt16]. We
compute everything with 256 bits of precision. In the complex FFT we use Cooley-Tukey butterflies
in the forward transform, Gentleman-Sande butterflies in the inverse transform and no reordering.
The signing algorithm does not need multiprecision floating point arithmetic and is thus suitable
for small devices. It mainly requires multiprecision integer polynomial arithmetic which we have
implemented using the GMP integer multiprecision library. It is possible to optimize this part of
our code. For example in the zero-knowledge proofs of the commitment scheme we only need that
differences of challenges are invertible modulo the second prime q2. The first prime q1 could thus
be chosen to be fully splitting and polynomial multiplications be computed with an NTT-based
algorithm. We obtain all randomness from the SHAKE-256 expandable output function [BDPVA13].

Table 1 lists the running times of the implementation. The time for key generation contains
the generation of the group public key and one member secret key. For further improvements, the
tree representing the L matrix of the compact LDL∗ decomposition of the trapdoor basis can be
precomputed, which would significantly reduce the key generation time for each individual member.
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Damien Stehlé. Crystals-dilithium: A lattice-based digital signature scheme. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(1):238–268, 2018.
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