Zero-Knowledge Proofs for Finite Field Arithmetic, or: Can
Zero-Knowledge be for Free?

Ronald Cramer! Ivan Damgard?

Abstract. We present a general method for constructing commitment
schemes based on existence of g-one way group homomorphisms, in which
elements in a finite prime field GF(q) can be committed to. A receiver
of commitments can non-interactively check whether committed values
satisfy linear equations. Multiplicative relations can be verified interac-
tively with exponentially small error, while communicating only a con-
stant number of commitments. Particular assumptions sufficient for our
commitment schemes include: the RSA assumption, hardness of discrete
log in a prime order group, and polynomial security of Diffie-Hellman
encryption.

Based on these commitments, we give efficient zero-knowledge proofs and
arguments for arithmetic circuits over finite prime fields, namely given
such a circuit, show in zero-knowledge that inputs can be selected leading
to a given output. For a field GF'(q), where g is an m-bit prime, a circuit
of size O(m), and error probability 2~™, our protocols require communi-
cation of O(m?) bits. We then look at the Boolean Circuit Satisfiability
problem and give non-interactive zero-knowledge proofs and arguments
with preprocessing. In the proof stage, the prover can prove any circuit of
size n he wants by sending only one message of size O(n) bits. As a final
application, we show that Shamirs (Shens) interactive proof system for
the (IP-complete) QBF problem can be transformed to a zero-knowledge
proof system with the same asymptotic communication complexity and
number of rounds.

1 Introduction

In this paper, we present a general method for building commitment schemes,
which are based on existence of any family of one-way group homomorphisms
with a particular extra property (detailed below). We call such functions g-one
way group homomorphisms.

Informally speaking, these schemes allow a prover to compute a commitment
to an element a in the finite prime field GF(q), having sent this commitment to
a wverifier, the prover cannot change his mind about a, still the verifier cannot
guess a from the commitment.

Our commitments are small (i.e. if ¢ is an m bit prime, commitments will be of
size O(m) bits) and have useful homorphic properties: given any linear equation
over GF(q), the verifier can check whether a set of committed values satisfy the
equation without communicating with the prover. We give an efficient protocol
allowing the prover to convince the verifier that committed values a, b, ¢ satisfy
ab = ¢ without revealing anything else about a, b, c. By efficient, we mean that
the protocol achieves error probability exponentially small in m, but requires

! ETH Ziirich
2 Aarhus University, BRICS (Basic Research in Computer Science, center of the Danish
National Research Foundation)

only communication of a constant number of commitments. Other auxiliary pro-
tocols allow the prover to convince the verifier that a commitment contains 0 or
1; and to convince him that pairs of committed bits (c1,dy), ---, (Cm, dm) satisfy
¢; = d;,© = 1..m by opening only one commitment.

We give examples of concrete assumptions sufficient for the existence of g¢-
one way homomorphisms, including the RSA assumption, hardness of discrete
log in a prime order group, and polynomial security of Diffie-Hellman encryp-
tion. When instantiating our commitments using these concrete assumptions, we
get some examples of commitment schemes that were known, while others are
new. However, no efficient multiplication protocol were known for any of these
schemes before. We consider this multiplication protocol and our unified view
of many apparently different commitment schemes to be an important technical
contributions of this paper 3. In recent work by Gennaro et al. [21] and Cramer
et al. [9], our commitment schemes have been used as an essential tool to build
efficient multiparty computations protocols.

Perhaps the most obvious application of commitment schemes in general is
for building Zero-Knowledge interactive proofs [20] and arguments [5]. These are
protocols allowing a prover to convince a verifier that a statement is true while
revealing nothing but the validity of the assertion.

Interactive proofs are secure against cheating even by infinitely powerful
provers, on the other hand, zero-knowledge can - at least for NP-hard prob-
lems - only be guaranteed relative to a computational assumption (unless the
polynomial time hierachy collapses, [15]). If one-way functions exist, then all
languages in IP (and hence in NP) have zero-knowledge proofs [19, 6]. Interac-
tive arguments are only secure against polynomial time provers, and so require
computational assumptions to establish soundness. On the other hand, they can
provide perfect (unconditional) zero-knowledge for all of NP [5].

Summarizing informally, these basic results say that, under reasonable com-
putational assumptions, all languages that have an interactive proof (argument),
also have a zero-knowledge interactive proof (argument), albeit a much less effi-
cient one. From this has emerged naturally a line of research aimed at improving
the efficiency (in terms of communication complexity) of zero-knowledge proto-
cols for NP complete problems such as SAT [4, 22, 23, 8]. It is natural to ask to
what extent we can reach the optimal situation, where giving a zero-knowledge
interactive proof for SAT, or other problems in IP, is as efficient as giving a
mere interactive proof? We do not have a general or final answer to this (hence
the question mark in the title). But we do show that our commitment schemes
can be applied to build protocols implying that in some cases, zero-knowledge
may indeed be almost or entirely for free, as far as communication complexity
is concerned.

We first present zero-knowledge proofs and arguments for arithmetic circuits
over finite prime fields, namely given a circuit with multiplication and addition
gates, show in zero-knowledge that inputs can be selected leading to a given
output. We will refer to this as the Arithmetic Circuit Problem (ACP). For a field

3In [16], a commitment scheme is given, together with a multiplication protocol with
properties somewhat similar to ours. That protocol, however, only works under a
specialized strong version of the RSA assumption, and can only be used to make
statistical zero-knowledge arguments (as opposed to perfect zero-knowledge argu-
ments as well as zero-knowledge proofs in our case).

GF(q), where g is an m-bit prime, a circuit of size O(m), cryptographic security
parameter m and error probability 2~™, our protocols require communication of
O(m?) bits. A more detailed account of the performance of our protocol is given
in Theorem 5.3 and shows that the circuit actually only influences the complexity
through the number of inputs and multiplications - linear operations are for
free. If the circuit involves m multiplications, the best previously known method
is to rewrite the multiplications to Boolean circuits and use the best known
protocol for circuit satisfiability. This leads to a communication complexity of
2(m? logm) bits.

The simplest (non zero-knowledge) proof system for ACP is non-interactive:
one just reveals the inputs. So we pay a price for zero-knowledge at least in terms
of the interaction required. For an NP hard problem, this cannot be avoided
unless NP C BPP. But we can partially avoid it by going to the model of non-
interactive proofs or arguments with preprocessing [28]. In this model, we present
protocols for ACP and Boolean Circuit SAT. Here, the prover and verifier are
allowed to do an interactive preprocessing stage, in which it is not necessary to
know which statement (circuit) will be proved later (except perhaps for an upper
bound on its size). Then, at a later time, the prover should be able to prove any
circuit of his choice by sending only one message.

For ACP, the complexity of both our preprocessing and proof phase is O(m?)
bits (the same as for the interactive protocol mentioned above). For the SAT,
using a circuit of size n, cryptographic security parameter n and error probability
27" our preprocessing has size O(n?) bits, whereas the proof is of size O(n) bits.
We note that our total communication complexity is the same as that of the best
previously known zero-knowledge interactive proofs [8] (which could not be split
in a preprocessing and proof phase).

To compare with earlier work on interactive arguments, we need to state the
performance of our protocols more accurately: for an error probability of 2%,
and cryptographic security parameter [, the complexity of the preprocessing is
O(In+ k) bits. The non-interactive proof stage has size O(n+1). The best earlier
work on arguments is by Cramer and Damgard [8] who obtained O(n)maz(l, k),
and by Kilian [23] who obtained O(kllog!). None of these protocol could be split
in a preprocessing and proof phase, as ours. Our total complexity improves on
[8] and is not directly comparable to [23]. It is superior to [23] for some choices
of parameters, e.g. when all parameters are chosen equal to n, but inferior in
other cases - in particular because of the very interesting fact that the result
from [23] does not depend on n.

From a practical point of view, Kilian’s results are not of much relevance,
since they are based on PCP’s [2], and hence rely on the elaborate reductions
needed to build PCP’s. By contrast, the constants involved in our asymptotic
complexities are small enough for our protocols to be practical with realistic
choices of parameters. For example, our most efficient argument for SAT based
on RSA produces a proof stage of size 2(n + [) bits, where [is the length of the
RSA modulus used. Which means that circuits of interest in real applications
(say of size 10.000-100.000 gates) would produce proof stages of size 3-26 Kbyte,
using a 1024 bit RSA modulus.

Our entire protocol for ACP, resp. the proof stage of our SAT protocol, have
the same worst case complexity as the simplest non zero-knowledge proof system,
where one just reveals the inputs, since indeed this may cost 2(n?), resp. £2(n)
bits in general. Although our protocols may therefore be optimal in this sense,

this does not exclude the possibility of finding much more efficient protocols for
particular classes of circuits, e.g. protocols with complexity depending only on
the number of inputs. Furthermore, it does not seem impossible to improve the
preprocessing for the SAT protocol, e.g. to O(n) bits.

Our final result shows that Shamirs (Shens) [26, 27]interactive proof system
for the (IP-complete) QBF problem can be transformed to a zero-knowledge
proof system with the same asymptotic communication and round complexity*.
So as far as Shen’s QBF protocol is concerned, our results do show that zero-
knowledge can be for free - but on the other hand, we do not know whether this
is an optimal proof system for QBF.

2 Commitment Schemes from Group Homomorphisms

A commitment scheme of the kind we use consists of a function commit : {0, 1} x
[0..g[— {0,1}!, whose description is output by a probabilistic polynomial time
generator on input 1! and a prime q, where [is a security parameter. This is done
in the set-up phase of the commitment scheme. The generator may be able to
take an arbitrary pair (g,l) as input. This is called a generator with unbounded
g- Or there may be a constant § > 0, such that the generator works, only if the
bit length of ¢ is 4l.

We refer to commit as the public key of the commitment scheme. To commit
to an integer a € [0..q[, one chooses r at random from {0,1}! and computes the
commitment C' < commit(r,a). To open a commitment, 7, a are revealed.

For interactive proofs, we will need commitments to be unconditionally binding:
a is uniquely determined from commit(r,a). We also need the scheme to hide a,
but in this case the scheme is at most computationally hiding: the distributions of
commitments to any pair of distinct integers are polynomially indistinguishable.

For interactive arguments, we use commitment schemes that are unconditionally
hiding: a commitment to a has distribution independent of a. Then the best we
can achieve is that the scheme is computationally binding: take any probabilistic
polynomial time algorithm which takes an input a public key produced by the
generator on input 1!. Let €(I) be the probability with which the algorithm
outputs a commitment and two valid openings revealing distinct values. Then
e(l) is negligible, i.e. for any polynomial p, e(l) < 1/p(l) for all large enough 1.

2.1 Basic Definitions

Definition 2.1 A Group Homomorphism Generator G is a probabilistic polyno-
mial time algorithm which on input 1' outputs a description of two finite Abelian
groups G, H and a homomorphism f : H — G. Elements in G, H can be repre-
sented as -bit strings, and the group operation and inverses in G and H can be
computed in polynomial time. Finally, o uniformly chosen element in H can be
selected in probabilistic polynomial time.

* It is, of course, well known [6] that it is possible to build a zero-knowledge protocol
from Shen’s or Shamir’s proof systems, provided one-way functions exist. However,
the transformation from [6] leads a huge loss of efficiency. Our result holds for an
error probability of 2", where n is the input length

G is said to be one-way if in addition the following holds for any polynomial
size family of circuits {A;| i = 1,2,..}: on input f,y, where f is selected by G
on input 1' and y is uniformly chosen in Im(f), the probability that A; outputs
x € H such that f(x) =y is negligible.

We will need a further property of the generator, which loosely speaking says
that f is as hard to invert in points of form y* as it is to invert it in y, as long
as 0 < ¢ < ¢, but inversion is easy in points of form y?:

Definition 2.2 A group homomorphism generator G is said to be q-one-way if it
is one-way, takes a prime q as additional input, and there is a polynomial time
algorithm satisfying the following: on input f,z,y,i where 0 < i < q, y € G,
f(2) = y¢, it computes x such that f(x) =y. Finally, there is a polynomial time
algorithm which on input y computes =' such that f(x') = y?.

We remark that if f is one-one, and |H| = ¢, g-one-wayness follows trivially
from one-wayness.

Definition 2.3 An unconditionally binding ¢-homomorphism generator G is a
g-one-way generator, which also satisfies that for f generated by G, there exists
y € G, such that yIm(f) has order q in the factor group G/Im(f). Furthermore,
the distributions y'f(r) and y? f(s) for 0 < i,5 < q, i # j and independently
chosen uniform r,s, must be polynomially indistinguishable.

Informally, what this definition says, is that a y should exist, such that the
cosets yIm(f),y>Im(f),.. are all distinct, and it should be hard to tell the
difference between random elements in distinct cosets.

2.2 Commiment Schemes

Throughout, we will assume that a prover P will be generating commitments
and sending them to a verifier V. First is an unconditionally hiding scheme:

— Set-up Phase: V runs g-one-way generator G on input 1/, to obtain f : H —
G. He chooses a random element y € Im(f), e.g. by choosing an element
in H and applying f. Then f,G,H,y are sent to P. V must now give an
zero-knowledge proof of knowledge that he knows an f-preimage of y. This
proof can be easily constructed from the f-preimage protocol in Section 2.3,
by using one-bit challenges, and iterating the protocol sequentially.

— Commitment to integer 0 < a < ¢: P chooses random r € H, and sends
commit(r,a) = y*f(r) to V.

— Opening commitment C: P sends a,r to V who accepts if and only if
C = commit(r,a) and 0 < a < gq.

— Hiding Property: is clear, since if P has accepted the set-up phase, it
follows (except possibly with exponentially small probability) that a com-
mitment will have distribution independent from the value committed to,
namely the uniform distribution over Im(f).

— Binding Property: If any cheating prover P* can open a commitment
to reveal two different values, he can produce a,r,a’,7" such that a > d
and y*f(r) = y* f(r'). Then y®=% = f(r'r~1), which means we can find a
preimage of y by definition of g-one-wayness. This in turn contradicts the
assumption that G is one-way, if P* is in polynomial time.

Next, we describe an unconditionally binding scheme:

— Set-up Phase: P runs unconditionally binding g¢-homomorphism generator
G on input 1%, to obtain f : H — G. He chooses an element y € G according
to Definition 2.3. Then f,G, H,y are sent to V. For some generators V can
verify himself that indeed y has the property requested in Definition 2.3. If
this is not the case, P must give a zero-knowledge proof that y & Im(f).
This can be done by a straightforward modification of the classical quadratic
non-residuosity protocol from [20].

Commitment to integer 0 < a < ¢: P chooses random r € H, and sends
commit(r,a) = y*f(r) to V.

Opening commitment C: P sends a,r to V who accepts if and only if
C = commit(r,a) and 0 < a < gq.

— Hiding Property: follows immediately from the assumption in Definition
2.3.

Binding Property: Definition 2.3 guarantees that if V accepts the set-up
phase, commitments to different values will be in distinct cosets of Im(f).

We will write [r, al, for y® f(r), and sometimes, when no misunderstanding is
possible, only [r,a] or [a]. It should be clear from the definition of these commit-
ments that both types have a linear homomorphic property: given commitments
[r,a] and [s,b], P can open [r,a] - [s,b] to reveal (a + b) mod q. Indeed, let j
be such that a + b = (a + b) mod g + jg, and let ¢ be such that f(t) = y?9.
Note that by g-one wayness, t is easy for P to compute. We have [r,a] - [s,b] =
[rst,(a 4+ b) mod g]. In a similar way, it follows that [r,a]® = [/, ca mod ¢] and
y© - [r,a] = [r", (¢ + a) mod ¢] for a constant ¢ and easily computable (by P)
values ', 7" € H.

2.3 Auxiliary Protocols

All protocols in this section are proofs of knowledge and 3-move Arthur-Merlin
games, with a random challenge from V as second message. We say that such
a protocol has the special soundness property if from any pair of conversations
(m,e,z),(m,e,2"), where e # €', one can efficiently compute the information
the prover claims to know. Referring to the definition of proofs of knowledge
from [3], we have the following which can be found, e.g. in the coming journal
version of [13]. It is hardly surprising, but less trivial to prove than one might
expect:

Lemma 2.4 If a protocol has special soundness, it has soundness error 1/c,
where ¢ is the number of possible challenges the verifier chooses from.

A protocol is special honest verifier zero-knowledge (SHVZK), if it has a simulator
which on input e produces a correctly distributed conversation (m, e, z).

We first give a protocol for showing that a commitment contains a 0/1 value.
For this, it turns out to be sufficient to be able to prove knowledge of a preimage
under f. The following protocol can be used for any f generated by a g-one-way
generator, and is a generalization of Schnorr’s discrete log protocol [25]:

f-PREIMAGE PROTOCOL
Input: f and u € G. P knows v, such that f(v) = u.

1. P chooses r € H at random and sends m = f(r) to V.

2. V chooses a random challenge e, so that 0 < e < ¢ and sends it to P.

3. P sends z = rv° to V, who checks that f(z) = mu®.

Lemma 2.5 If P,V follow the protocol, V' always accepts. The protocol has the
special soundness property and is SHVZK.

Proof The first claim is trivial. The second follows directly from the definition
of g-one-wayness. Finally, on input e, one simulates by choosing at random z
and outputting (f(z)u"¢,e€, 2). O

It is clear that this protocol can be used to show that a commitment C
contains 0, by using 4 = C, and that it contains 1 by using v = Cy~'. We
may now use the proof of partial knowledge technique from [10, 12] to make a
protocol in which P proves that C' contains 0 or 1, without revealing which is the
case. The resulting protocol is referred to as a bit commitment proof. It is still
SHVZK, and has special soundness. Its communication complexity is 4]+ 2loggq
bits.

The final auxiliary protocol we have is a multiplication protocol, an interactive
proof showing that the prover can open commitments A, B,C to reveal values
a, b, c for which ¢ = abmod q. As a side effect, we also obtain a protocol for
showing that the prover can open a commitment.

Assume P knows how to write the commitments in the form A = [r,qa]y, B =
[u,bly, C = [s,abmod ¢],. Now observe that if we choose j such that ab =
(ab) mod q + jq and set t = f~1(y~99)su~?, then t is easily computable by P,
and C = [t,a]p. Conversely, assuming that you can open A and B to reveal a, b,
knowledge of such a t implies you can open C' to reveal ab mod q. With this
rewriting of C' we see that, loosely speaking, we need a protocol for showing that
A contains the same value w.r.t. y as does C' w.r.t B. This leads to:

MULTIPLICATION PROTOCOL
Input: f and commitments A, B,C. P knows a,r,t,b,u, such that A = [r,a],,
C =[t,a]p and B = [u, b],.

The protocol proceeds by executing the following two 3-step protocols in
parallel, using the same challenge e in both instances. The first is intended to
verify that A, C have the correct form, while the second verifies that the prover
can open B %:

1. First protocol:
(a) P chooses z € Z, and s1,s3 € H at random and sends My = [s1,]y,
My = [s2,z]p to V.
(b) V chooses a random number e, so that 0 < e < ¢ and sends it to P.
(c) P sets z = (z + ea) mod ¢ and chooses 4 such that z = z + ea + iq. He
then computes w; = 517 f~!(y~") and wy = sot f~1(B~%). He sends
z, w1, w2 to V, who verifies that [wi, 2], = M1 A® and [we, 2] = M2C".
2. Second protocol:
(a) P chooses d € Z, and s € H at random and sends M = [s,d], to V.
(b) V chooses a random number e, so that 0 < e < ¢ and sends it to P.

5 In some cases, the context may imply that P knows how to open B, in which case
the second subprotocol can be omitted.

(c) P sets v = (d+ eb) mod ¢ and chooses j such that v = d + eb + jq. He
then computes w = su®f~!(y~77). He sends v, w to V, who verifies that
[w,v]y = M B®

The properties of this protocol are the following:

Lemma 2.6 If P,V follow the protocol, V always accepts. The protocol has
special soundness: from two accepting conversations with challenges e, €', e # €',
one can efficiently compute a,r,b,u,s such that A = y®f(r), B =y’ f(u), C =
y2tmedd f(s). Finally, the protocol is SHVZK.

Proof The first claim is trivial by inspection. For the second, we let two conver-
sations (M, My, Ma, e,v,w, z,wy, w2), (M, My, M, €', o', w', 2w}, wh), where e #
e’ be given. If they lead to accept, we immediately obtain 3 equations from
each conversation. By dividing them pairwise, we get: === f (wlw’l_l) = 4
B> f(wowl ') = C*=¢ and y*~*' f(ww'~!) = B¢ . Define w = (e—e')~! mod
q, and 7 such that (e —e')w = 1+iq. Let a = f~1((B%)), which is easy to com-
pute by g-one wayness. Then by raising the last equation to w, we get

B = y(va')wf((w,wlfl)wafl)

which is the desired form. The other two equations can be treated similarly.
For honest verifier simulation on input e, choose v, w, z,w;,ws uniformly at
random, and compute the rest of the conversation by: M = y* f(w)B~¢, My, =
y* fw)C¢, My = B f(w2)C™°. o

The communication complexity of the multiplication protocol is 6/ + 3logg
bits.

Both our auxiliary protocols have soundness error 1/¢ by construction. For
our main protocols, we will need error 2=%. For this, we will iterate the auxil-
iary protocols in parallel [k/logq] times. This works, since SHVZK and special
soundness are trivially seen to be preserved under parallel composition.

3 Examples of Group Homomorphism Generators

Any of our generators have 1! and a prime ¢ as input parameters. Generators
with bounded ¢ include as part of their definition a constant §. Proofs in this
section are left to the reader.

RSA GENERATOR

The generator selects an RSA modulus N = p;py of bit length [, for primes
p1, P2, such that (g, (p1 —1)(p2 — 1)) = 1. The output is N. For this generator,
we define H = G = Z};, and f(z) = 27 mod N.

Lemma 3.1 Under the RSA assumption, the RSA generator is a q-one-way
generator, with unbounded q.

One can also base an unconditionally binding generator on an RSA-like func-
tion. The resulting commitment/encryption scheme was first discovered by Be-
naloh [7] in the context of verifiable secret sharing.

g-RESIDUOSITY GENERATOR

The generator selects an RSA modulus N = pyps of bit length [, for primes
p1,P2, subject to ¢|(p1 — 1)(p2 — 1) and & = loggq/log N. The output is N.
For this generator, we define H = G = Z};, and f(z) = 29 mod N. By the
q’th residusity assumption, we mean the assumption that random elements in
distinct cosets of Im(f) as defined here are polynomially indistinguishable. This
is a natural generalization of the well known quadratic residuosity assumption.

Lemma 3.2 Under the q’th residuosity assumption, the q-residuosity generator
is an unconditionally binding g-homomorphism generator.

We now show a generator based on the discrete log problem modulo a prime
number. The commitment scheme resulting from this generator was first discov-
ered by Pedersen [24] in the context of verifiable secret sharing.

DISCRETE LOG GENERATOR

The generator selects randomly a prime p of bit length [, subject to § = log g/ logp
and g|p — 1, where 0 < § < 1 is a constant. It also selects g € Z, such that g
generates the (unique) subgroup in Z3 of order q. The output is p,g. For this
generator, we define H = Z,,G =< g >, and f(z) = ¢* mod p. When using this
generator as basis for our protocols, we will assume that a party receiving an
element u supposedly in G always verifies that u? = 1 and stops the protocol if
not.

Lemma 3.3 Assume that any probabilistic polynomial time algorithm solves the
discrete log problem modulo prime numbers as selected by the Discrete Log Gen-
erator with negligible probability. Then the Discrete Log Generator is a g-one-way
generator with bounded q.

We remark that nothing prevents us from using other groups of prime order,
such as for example the group on an appropriately chosen elliptic curve. Finally,
we show an example of an unconditionally binding generator, based on the Diffie-
Hellman problem [11]:

DIFFIE-HELLMAN GENERATOR
The generator selects randomly a prime p of bit length 1/2, subject to 6 = logq/!
and g|p — 1, where 0 < § < 1/2 is a constant. It also selects g € Z,, such that g
generates the (unique) subgroup in Z; of order ¢, and finally a random h €< g >.
The output is p, g, h. For this generator, we define H = Z,,G =< g > x < g >,
and f(z) = (¢® mod p, h® mod p) ©.

Recall that (p, g, g, h) can be used as a public key to encrypt an element m €<
g > by choosing r at random and letting the ciphertext be (¢" mod p, mh™ mod
p) [14]. Recall also the notion of polynomial security, defined by Goldwasser
and Micali [18], which says that random encryptions of distinct messages are
poynomially indistinguishable.

Lemma 3.4 If Diffie-Hellman encryption is polynomially secure, then the Diffie-
Hellman generator is an unconditionally binding qg-homomorphism generator.

5 The remark on verification of membership in G for the Discrete Log Generator also
applies here

4 Protocol Descriptions

This section describes our protocols in a way that is independent from any
particular implementation of the commitment scheme. We will describe how to
build honest verifier zero-knowledge protocols. Well known techniques may then
be used to make protocols that are zero-knowledge in general. Common to all
our protocols is an intital step in which the prover and verifier go through the
setup phase for the commitment scheme, as described in Section 2. This can be
done once and for all, and the instance of the commitment scheme generated
can be reused in several protocol executions. Therefore, we do not mention the
intital step explicitly in the descriptions below.

The linear homomorphic property of commitments can be used to show re-
lations on committed bits. Concretely, suppose we want to show for two sets
of bit-commitments Dy, ..., D, and Cy,...,C,, where n < loggq, that the same
bit b; is contained in C; and D;, for ¢ = 1...n. This can be done much more
efficiently than by comparing each C;,D; individually. For this, we have the
following protocol:

EQUALITY PROTOCOL

V computes the commitments C = C2"-C2" | -..-Cy,and D = D2"-D2" ...-D,
which should both be commitments to the number whose binary representation
is bpbp_1...bg. P opens CD~! to reveal 0.

2n—1 2n—1

It is easy to see that this game reveals nothing about the value of by, ..b,, and
that assuming P can open each of the commitments to reveal a one-bit value,
all pairs C;, D; contain the same bit, or he can break the commitment scheme.

4.1 Protocols for Arithmetic Circuits over GF(q)

In this section, we are given an arithmetic circuit ¥ over GF(q), where ¢ is an
m-bit prime, with » inputs, ¢ multiplication gates, and any number of linear
operations. All gates have arbitrary fan-out. We assume for simplicity that there
is only one output value computed, from gate G, we are given a value y for this
output, and the prover’s goal is to demonstrate that inputs can be selected that
lead to output y.

STEP 1

The prover makes u commitments I,.., I, such that I; contains input value
z; € GF(q). The input values are selected such that the circuit computes y as
output. The prover also makes t commitments 71, ..., 73, such that T; contains
the value that is output by the ’th multiplication gate in the circuit, given that
the inputs are z1, ..., z,,. All commitments produced are sent to V', and P proves
that he knows how to open all of them.

STEP 2

Both P and V compute, based on I, ..,I,,T1,..,T; and using linearity of com-
mitments, for each gate commitment(s) representing its input value(s), and a
commitment representing its output value.

PROOF, Step 3
For each multiplication gate: let A, B be the commitments representing the input

values a, b, and let C' be the commitment representing the output value c. P uses
the multiplication protocol to convince V that ab mod ¢ = c.

PROOF, Step 4
P opens the commitment representing the output value of Gy.

V' accepts, if and only if all proofs in Steps 1 and 3 are accepted, and P
correctly opens the commitment in Step 4 to reveal y.

For clarity, we have separated the invocation of subprotocols into steps 1
and 3. However, they can all be executed in parallel, using the same random
challenge from V for all of them. By SHVZK for the subprotocols, this can still
be simulated against an honest verifier. We get the following, which we state
without proof:

Lemma 4.1 The above protocol is using commitments constructed from a q-
one-way generator is perfect honest verifier zero-knowledge, and honest verifier
zero-knowledge when using commitments constructed from an unconditionally
binding q-homomorphism generator. The communication complexity is O((u +
t)(L + m)[k/m]) bits in either case.

A Non-interactive with Preprocessing Variant We sketch here a variant
of the arithmetic circuit protocol that is non-interactive with preprocessing. The
asymtotic complexity for the preprocessing is the same as the original protocol,
whereas the proof phase has complexity O((u + t)(I + m)) bits. The variant is
based on a technique borrowed from Beaver et al. [1].

In the preprocessing, the prover will produce commitments Ji, ..., J,, con-
taining random values (will later represent input values), and ¢ random triples
of commitments ([d], [e], [f]) such that de = f mod ¢. The prover will show that
he can open all commitments and that the multiplicative relations hold.

In the proof phase, a circuit with input values is known to the prover. Con-
sider a fixed multiplication gate. It is first assigned a distinct triple ([d], [¢], [f])
from the preprocessing. Let a, b, c, where ab = ¢ mod g be the values actually
occurring at the gate. The prover can now send to the verifier € = a — d and
0 = b— e. Now, the verifier can on his own compute a triple [a], [b], [c] by letting
[a] = y<[d], [b] = y°[e] and [c] = y*°[f] - [d]° - [e]".

In the same way, the prover tells the verifier how to modify the J;’s to get
commitments containing the correct inputs to the circuit by giving the differences
between the random values in the J;’s and the actual values.

All that remains is for the prover to show that “gates connect correctly”, i.e.
that if e.g. A’ represents the output from one gate, which is connected to the
input of another gate, represented by A, the prover shows that A and A’ contain
the same value by opening A’A~! as 0 (where, however, V can handle linear
operations on his own).

4.2 Non-Interactive Protocols with Preprocessing for SAT
For the protocol description, we first need some notation and definitions: We

will assume (without loss of generality) that the circuit to be proved satisfiable
later is given with at most n NAND gates with fan-in 2 and arbitrary fan-out.

Definition 4.2 A NAND-Table is a matriz with 4 rows and 3 columns contain-
ing commitments. A NAND-table is correct, if it contains only bit commitments
and any of its rows ([a], [b], [c]) satisfies a Ab= —c. An NAND table is useful if
it is correct, and if one obtains, by opening all its commitments and permuting
the rows, the truthtable of the NAND-function.

In the following the honest prover will make only useful NAND-tables, but
to keep the prover from cheating it will be enough to force him to generate
at least correct NAND-tables. To show correctness of a NAND-table, P can
first show that the 8 commitments in the two first positions of each row are
bit commitments. Then for each row [a], [b], [¢], P shows that 1 — ¢ = abmod gq.
Assuming that a and b are 0/1 values, this ensures that so is ¢, and that ¢ = aAb.

PREPROCESSING

The prover makes n useful NAND-tables, using for each table an independently
and uniformly chosen permutation of the rows. He proves that all NAND-tables
are correct, as described above.

For the proof phase, we are given the concrete circuit @ that should be shown
to be satisfiable, containing gates G1, .., G,,, where we assume that G, is the gate
computing the final output from the circuit. The proof string to be sent to V is
constructed by P as follows:

PROOF, Step 1

For i = 1..n, take the first unused NAND table T; from the preprocessing and
assign it to gate Gj.

Fix a set of input bits that satisfy the circuit. A computation with these input
bits selects in a natural way a row in each T;. For ¢ = 1..n, P includes 2 bits in
the proof string indicating which row is selected.

Having selected rows in all truth tables, P has defined commitments rep-
resenting the inputs and output of each gate. He must now demonstrate that
” gates connect correctly”:

PROOF, Step 2

We make a list of pairs of commitments as follows: Let w be a wire in the circuit.
If it connects from T; to T;, append to to the list the pair of commitments
representing the output from Tj resp. the relevant input to T;. For each circuit
input bit b, let Ty be the first gate receiving b. Append to the list a set of pairs,
each of which have the input commitment from T} as first component and as
the second an input commitment from each distinct gate also receiving b.

P must now show that each pair of commitments contain the same bit.
Clearly, this gives at most 2n pairs of commitments that must checked for
equality. For commitments with unbounded ¢, or bounded commitments where
0l > 2n, P completes these equality proofs by opening only one commitment, by
running the Equality protocol shown above. Otherwise, the bits to be compared
are distributed over several commitments holding 4l bits each, so P will need to
open 2n/(6l) commitments.

PROOF, Step 3
P opens the last commitment in the selected row of T, (to reveal 1, in order to
convince V' about the final result of the computation in the circuit).

VERIFICATION OF PROOF

If V rejected any of the proofs in the preprocessing, V' rejects immediately.
V selects the rows designated by the information from Step 2 of the proof. V
computes the pairs of commitments used by P in Step 3, and verifies that P
have proved that all pairs contain equal bits (this amounts to verifying that P
has correctly opened one or more commitments to reveal 0). Finally V verifies
that the commitment opened in Step 4 was correctly opened to reveal 1.

As for ACP, the subprotocols in the preprocessing can be done in parallel.
This, and SHVZK for the subprotocols lead to:

Lemma 4.3 The above protocol using commitments constructed from a g-one-
way generator is perfect honest verifier zero-knowledge. If the generator has un-
bounded q, the communication complexity of the preprocessing is O(nl + k) bits,
and O(n)maz(k,l) bits otherwise. When using commitments constructed from
an unconditionally binding g-homomorphism generator, the protocol is honest
verifier zero-knowledge, and the communication complezity of the preprocessing
is O(nl + k) bits. The proof stage has size O(n +1) in all cases.

4.3 Zero-Knowledge Proof for QBF

In [26], Shamir gave the first proof that IP = PSPACE, by exhibiting an inter-
active proof system for the PSPACE complete QBF problem. A little later, Shen
[27], building on Shamirs ideas, gave a somewhat more efficient proof system for
QBF, which appears to be the most efficient proof system known for QBF. In
this section, we sketch how our techniques may be applied to transform Shens
proof system into a zero-knowledge proof system with the essentially the same
communication and round complexity.

By examining Shen’s protocol, one finds that all the work done takes place
in a finite field GF(q) for some prime g. If, for a QBF instance of length n, we
want error probability 27", the analysis of the protocol shows that this can be
done by using a ¢ of bit length O(n). By further inspection of the protocol, one
finds that in each round of the protocol, the prover sends the coefficients of some
polynomial, the verifier checks this polynomial, and returns a random element in
the field. The operations done by the verifier in order to check the polynomials
received all fall in one of the following categories:

1. Evaluate a polynomial received from the prover in a point chosen by the
verifier, or in a constant point.

2. Add or multiply a constant number of values computed as in 1).

3. Compare values computed as in 1) or 2).

4. The final step: insert all random values chosen by the verifier into a mul-
tivariate polynomial efficiently computable from the input QBF instance.
Compare the result to a value obtained from the previous rounds.

We now modify the protocol by having the prover communicate his polyno-
mials by in stead sending commitments to each of the coefficients. This affects
the number of bits needed to send a polynomial by at most a constant factor,
and furthermore the verifier can on his own compute commitments to results
of operations of type 1). For the multiplications in 2), the prover supplies a
commitment containing the result of each such multiplication. Therefore, at the

end of the interaction, the verifier has for each multiplication in the original
protocol a set of triples of commitments ([a], [b],[c]), also he has one commit-
ment D together with a value d that can be computed efficiently from the QBF
instance. The verifier now only needs to be convinced that for each triple, it
holds that ab mod p = ¢, and that D contains d. The multiplication protocol
allows the prover to convince the verifier about these facts in honest verifier
zero-knowledge. Since it is constant round and communicates a constant num-
ber of commitments, we get a protocol with the same round and communication
complexity, up to a constant factor.

5 Results for the Main Protocols

The results below use the same notation as the corresponding protocol descrip-
tions, and all protocols are designed for an error of 27*. For formal definitions
of proof systems, completeness, soundness and zero-knowledge, please refer to
[20]. In the case of arguments, completeness and zero-knowledge are as for proof
systems. For computational soundness, we use the definition of [13] (with one
change, see below) and show that our protocol, given an instance of the com-
mitment scheme, has soundness error 27% relative to the problem of breaking
the commitment scheme. Concretely, this means that if a cheating prover has
success probability € > 27%, then he can break the commitment scheme instance
in expected time polynomial in / and linear in 1/(e — 27*%). In [13], the circuit
to prove is given as input initially. This cannnot be assumed to be true for a
protocol with preprocessing. So for this case, we define the success probability of
a cheating prover to be the probability with which he can successfully complete
the preprocessing, and then compute a non-satisfiable circuit together with a
proof that the verifier will accept.

We note that all our communication complexity results are computed without
including the complexity of setting up the commitment schemes, since the same

commitment scheme instance can be reused in many protocol executions 7.

Theorem 5.1 If there exists a q-one-way generator with unbounded q then there
exists a mon-interactive perfect zero-knowledge argument with preprocessing for
Boolean Clircuit Satisfiability. The communication complezity of the preprocess-
ing is O(nl + k) bits, while the proof phase has size O(n +1). If the generator
has bounded q, the conclusion is the same, but the communication complexity of
the preprocessing becomes O(n)max(k,l) bits.

Theorem 5.2 If there exists an unconditionally binding g-homomorphism gen-
erator (with bounded q) then there exists a non-interactive zero-knowledge proof
with preprocessing for Boolean Formula Satisfiability, such that the communica-
tion complexity of the preprocessing is O(n)max(k,1) bits, while the proof phase
has size O(n +1).

Theorem 5.3 If there exists an q-one-way generator, resp. an unconditionally
binding q-homomorphism generator then there exists a perfect zero-knowledge

" However, in several cases, including the setup step makes no difference. This is true in
general for Theorem 5.1, and for Theorems 5.2, 5.3 when based on the Diffie-Hellman
generator.

argument, resp. a computational zero-knowledge proof for ACP. The communi-
cation complexity is O((u + t)(I + m)[k/m]) bits in either case.

A sketch of the proofs for these theorems: From Lemmas 4.1, 4.3, we have
honest verifier zero-knowledge protocols, which, except for the initial set-up of
commitment schemes are 3-move Arthur-Merlin games with k-bit challenges,
and have communication complexities as required in the theorems.

To establish soundness, we observe that from correct answers to 2 different
challenges, one can compute either a satisfying assignment or two different ways
to open some commitment, the latter case being of course impossible with un-
conditionally binding commitments. This immediately implies soundness for the
interactive proof case and, using Lemma 2.4, also for the argument case.

To show zero-knowledge in general, we observe that the interactive arguments
we have from the lemmas are already zero-knowledge in general, since the verifier
shows knowledge of a trapdoor for the commitments in the initial stage. Adjust-
ing correctly the error probability of this proof, we can ensure that by rewinding
the verifier, the simulator can, in expected polynomial time, either extract this
trapdoor or exhaustively find a satisfying assignment. Then simulation is trivial
in either case. For the interactive proof case, we use the well-known idea that
the honest verifier simulator can be used as subrutine in a real simulation pro-
vided that the verifier commits to his challenge in advance. For a solution of the
subtle technical problems with this, see [17]. If we use our unconditionally hid-
ing commitments for this part, both soundness and asymptotic communication
complexity will be unaffected.

Theorem 5.4 If there exists an unconditionally binding q-homomorphism gen-
erator (with bounded q), then there exists a zero-knowledge interactive proof sys-
tem for the QBF problem with the same asymptotic round and communication
complezity as Shen’s interactive proof system when designed to have error prob-
ability 2= for a length n QBF instance.

Proof sketch

The zero-knowledge protocol described in Subsection 4.3 consists of first a stage
where the prover and verifier go through ”the same” interaction as in the original
proof system, except that the prover sends commitments to his messages. Then
a stage, where the prover convinces the verifier that a set of relations hold
between the committed values. This stage is only honest verifier zero-knowledge
as described in Section 4.3, but can be made zero-knowledge with no essential
loss of efficiency in the same way as above, using the method from [17]. Having
said this, the proof that our modified protocol is a zero-knowledge proof system
for QBF is a straightforward modification of the proof from [6]. Specifically, note
the following: Like ours, the protocol built in [6] is a modification of an Arthur-
Merlin interactive proof system with one-sided error. The transformation from [6]
results in a two-stage protocol of the same form as ours. And finally, [6] assumes
that the prover encrypts his messages using polynomially secure probabilistic
encryption. This corresponds to the hiding property of our commitments. O

References

1. D. Beaver: Efficient Multiparty Protocols Using Circuit Randomization, Proceed-
ings of Crypto 91, Springer-Verlag LNCS, 1992, pp. 420-432.

10.

11.

12.
. I. Damgaard and B. Pfitzmann: Sequential Iteration of Interactive Arguments,

14.
15.
16.
17.
18.
19.
20.
21.

22.
23.

24.
25.

26.
27.

28.

L. Babai, L. Fortnow, L. Levin and M. Szegedi: Checking Computations in Poly-
logarithmic Time, Proceedings of STOC 91.

M. Bellare and and O. Goldreich: On Defining Proofs of Knowledge, Proceedings
of Crypto ’92, Springer Verlag LNCS, vol. 740, pp. 390-420.

J. Boyar, G. Brassard and R. Peralta: Subquadratic Zero-Knowledge, Journal of
the ACM, November 1995.

G. Brassard, D. Chaum and C. Crépeau: Minimum Disclosure Proofs of Knowledge,
JCSS, vol.37, pp. 156-189, 1988.

M.Ben-Or, 0.Goldreich, S.Goldwasser,
J.Hastad, J.Kilian, S.Micali and P.Rogaway: Ewverything Provable is Provable in
Zero-Knowledge, Proceedings of Crypto 88, Springer Verlag LNCS series, 37-56.
J. Benaloh: Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret,
Proc. of Crypto 86, Springer Verlag LNCS series, 251-260.

R. Cramer and I. Damgard: Linear Zero-Knowledge, Proc. of STOC 97.

R. Cramer, I. Damgard and U. Maurer: Span Programs and General Se-
cure Multiparty Computations, BRICS Report series RS-97-27, available from
http://www.brics.dk.

R. Cramer, I. Damgard and B. Schoenmakers: Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols, Proceedings of Crypto ’94, Springer
verlag LNCS, vol. 839, pp. 174-187.

W. Diffie and M. Hellman: New Directions in Cryptography, IEEE Transactions on
Information Theory IT-22 (6): 644-654, 1976.

De Santis, Di Crecenzo, Persiano and Yung, Proceedings of FOCS 1994.

Proc. of ICALP 98, Springer Verlag LNCS series.

T. ElGamal, A Public-Key Cryptosystem and a Signature Scheme based on Discrete
Logarithms, IEEE Transactions on Information Theory, IT-31 (4): 469-472, 1985.
L.Fortnow: The complezity of Perfect Zero-Knowledge, Adv. in Computing Re-
search, vol.5, 1989, 327-344.

E. Fujisaki and T. Okamoto: Statistical Zero-Knowledge Protocols to prove Modular
Polynomial Relations, Proceedings of Crypto 97, Springer Verlag LNCS series.

O. Goldreich and A. Kahan: How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP, Journal of Cryptology, (1996) 9: 167-189.

S. Goldwasser and S. Micali: Probabilistic Encryption, JCSS, vol.28, 1984.

0. Goldreich, S. Micali and A. Wigderson: Proofs that yield Nothing but their
Validity and a Methodology of Cryptographic Protocol Design, Proceedings of FOCS
'86, pp. 174-187.

S. Goldwasser, S. Micali and C. Rackoff: The Knowledge Complezity of Interactive
Proof Systems, SIAM J.Computing, Vol. 18, pp. 186-208, 1989.

R.Gennaro, T.Rabin and M.Rabin: Simplified VSS and Fast-Track Multiparty
Computations, Manuscript, 1997.

J. Kilian: A note on Efficient Proofs and Arquments, Proceedings of STOC ’92.
J. Kilian: Efficient Interactive Arguments, Proceedings of Crypto 95, Springer
Verlag LNCS, vol. 963, pp. 311-324.

T. Pedersen: Non-Interactive and Information Theoretic Secure Verifiable Secret
Sharing, proc. of Crypto 91, Springer Verlag LNCS, vol. 576, pp. 129-140.

C. P. Schnorr: Efficient Signature Generation by Smart Cards, Journal of Cryptol-
ogy, 4 (3): 161-174, 1991.

A.Shamir: IP=PSPACE, Journal of the ACM, vol.39 (1992), 869-877.

A. Shen: IP=PSPACE, Simplified Proof, Journal of the ACM, vol.39 (1992),
pp.878-880.

A. De Santis, S. Micali, G. Persiano: Non-interactive zero-knowledge with prepro-
cessing, Advances in Cryptology - Proceedings of CRYPTO 88 (1989) Lecture
Notes in Computer Science, Springer-Verlag pp. 269-282.

