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Abstract

We present a 4-move zero-knowledge proof system
[21] for any NP language L, which allows showing that
x € L with error probability less than 27% using com-
munication corresponding to O(|z|°)+O(k) bit commit-
ments, where ¢ is a constant depending only on L. We
also present a 4-move perfect zero knowledge interac-
tive argument for any NP-language L. On input z € L,
the communication complexity is O(|z|°) -max(k,!) bits,
where [ is the security parameter for the prover !.

The protocols can be based on any bit commitment
scheme with a particular set of properties. We suggest
efficient implementations based on discrete logarithms
or factoring.

As a function of the security parameters, our proto-
cols have the smallest known asymptotic communica-
tion complexity among general proofs or arguments for
NP. Moreover, the constants involved are small enough
for the protocols to be practical in a realistic situa-
tion: our protocols allows proving/arguing satisfiabil-
ity of a Boolean formula ® (containing and-, or- and
not-operators) with communication complexity at most
6n + 2 commitments for the interactive proof and at
most 5nl + 10/ bits for the argument (assuming k < 1),
where n is the number of times @ reads an input vari-
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1The meaning of [ is that if the prover is unable to solve an
instance of a hard problem of size { before the protocol is finished,
he can cheat with probability at most 2%

able. Thus, if we use k = n, the number of commitments
required for the proof is linear in n.

Finally, we present an application of our results that
results in a protocol for oblivious transfer requiring O(1)
commitments of size O(k) bits for a maximal cheating
probability of 27%. Corresponding results for multiparty
computations follow from this.

1 Introduction

Most known zero-knowledge interactive proofs or ar-
guments for a general NP language, such as the clas-
sical methods of Goldreich, Micali and Wigderson [18]
and Brassard, Chaum and Crépeau [5], yielding zero
knowledge interactive proofs and -arguments for gen-
eral NP-languages respectively, first construct a proto-
col that allows a prover to cheat with probability 1/2,
which is then iterated k times to achieve the required
confidence level of 1/2%. These methods would require
Q(nk) bit commitments to show for instance satisfiabil-
ity of a Boolean circuit of size n.

Several methods have been suggested for achieving the
security amplification more efficiently than by the naive
method. The work of Boyar, Brassard and Peralta [4]
provides the first approach that improves on these com-
munication complexities. They present zero knowledge
proofs for circuit satisfiability using a “sub-quadratic
number” of commitments. Roughly speaking, for large
n and k they achieve zero knowledge interactive proofs
using O(y/nk) bit commitments. Usually, one sets k
equal to the size of the input, yielding roughly O(n?/?)
bit commitments in this case, hence a sub-quadratic
number. Note that from this point of view, the results
of [4] use a quadratic number of bit commitments.

Kilian [24] later extended their results by using the
probabilistically checkable proofs (PCP) of [1]. More
precisely, a zero-knowledge interactive proof that a
circuit of size n is satisfiable is constructed using?
O(n'*+e1)+0(log®?(n))k ideal bit commitments and hav-
ing error probability 27%. For interactive arguments

2Here ¢; is any positive constant and ¢z = O(1/¢1).



similar results are given, using a collision intractable
hash function in addition. The latter result was further
improved in [25], resulting in an interactive argument
with communication complexity O(lklog!) bits. Here,
and in the following, [ is the security parameter for the
prover. Thus, in order to cheat with probability larger
than 2%, the prover must solve an instance of size { of a
hard computational problem, such as finding a discrete

logarithm modulo an {-bit prime3.

In this work, we show that these communication com-
plexities can be further improved. We do not use PCP’s
to build our protocols, in stead we use a new proof tech-
nique that may be of independent interest: We start
from any Boolean formula @ for checking an NP-witness
for the language in question, and reduce the problem of
showing that & is satisfiable to showing that a mono-
tone formula constructed from @ is satisfied by inputs
contained in a given set of commitments. We then apply
a technique derived from the ”proofs of partial knowl-
edge” introduced by Cramer et al. [8] (and indepen-
dently in [27]). The properties we require from our bit-
commitments are as follows: Of course, any bit commit-
ment scheme must commit the prover, unconditionally
or not, to a particular bit, and it must be impossible
for the verifier, unconditionally or not, to find the bit
committed to from a commitment. In addition, we need
the following:

e Given a commitment C' containing a bit b, the
prover must be able to convince the verifier that C
contains b, using an honest verifier zero-knowledge
protocol. This protocol must be a 3-move Arthur-
Merlin game, it must have exponentially small er-
ror probability, and have communication complex-
ity corresponding to a constant number of commit-
ments.

As detailed later, this conditions can be met by com-
mitments based on the discrete logarithm problem in a
group of prime order, or the factoring problem.

Given a family C of polynomially sized Boolean circuits,
one can efficiently transform each C' € C to a Boolean
formula ®¢ such that ®¢ is satisfiable if and only if C
is. Moreover, |®¢| = O(|C|). Using this, our approach
results in zero-knowledge interactive proofs for circuit
satisfiability (and thus for NP) with error probability
27% and communication complexity corresponding to
O(n)+0(k) commitments; for interactive arguments for
NP we get communication complexity O(n) - maz(k,!)
bits (we count commitments for the proof and bits for
the argument to facilitate comparison with [24, 25]).

Comparing this to [24], [25] which were the best re-
sults so far, we see that for interactive proofs, the term

3 More precisely, one can show that if a prover can argue a false
statement with success probability € > 2%, then he can solve the
hard problem in time polynomialin 1/(e — 27%).

depending on k has been reduced from O(log™ n)k to
k. For arguments, our result is inferior to [25] when
viewed as a function of n, but superior as a function of
the security parameters k& and [. Note that our inter-
active argument has no need for a collision-intractable
hash function, we only need commitments with the right
properties. Hence our cryptographic assumption is po-
tentially weaker than the ones needed in [25].*

In a different line of research, Kilian et al. propose in
[22] a method for using a multibit commitment scheme
in a protocol such as the one for circuit SAT in [5]. If
this multibit commitment is such that the amortized
communication needed per bit committed to is small,
this can lead to a more communication efficient proto-
col than [5] with a one-bit commitment scheme. This
method 1s essentially a way to execute more efficiently
the atomic step of a protocol such as the one in [5].
The error reduction is still obtained by simple sequen-
tial iteration. Therefore improvements obtained by this
method will in general be inferior to ours as a function
of the parameter k£ controlling the error reduction.

Very recently, Damgard and Pfitzmann [11] have shown
that the multi-bit commitment scheme of Damgard et
al. [12] based on collision intractable hashing can be
used with the method of [22]. This leads to an in-
teractive argument which has in a practical situation
communication complexity similar to ours. However it
is only statistical zero-knowledge and needs a linear,
rather than a constant number of rounds. Another pos-
sibility, leading to an interactive proof, is to use the
commitment scheme of Naor [23] based on pseudoran-
dom generators.

If one adopts the usual convention of setting the security
parameter k equal to the input size, our result implies a
zero knowledge interactive proof that proves satisfiabil-
ity of a circuit of size n with error probability 27" using
O(n) commitments. Even if an extremely small PCP
would exist, the protocol in [24] would use Q(nlog® n)
commitments to solve the same problem. To the best
of our knowledge, our protocol is the first to achieve
“linear zero-knowledge” in this sense. For arguments,
we get O(n?) bits using I = k = n, where [25] would be
O(n?logn) bits.

Our final result applies our general result and our con-
crete bit commitment example to build a protocol for
oblivious transfer requiring O(1) commitments of size
O(k) bits for a maximal cheating probability of 27*.
Corresponding results for multiparty computations fol-
low from this.

4 Although no example is currently known that would support
our needs, and not simultaneously imply a collision intractable
hash function.



Remark

For the case of interactive proofs, we have, like [24],
ignored in the statement of results the communication
needed to set up the commitment scheme 5. This is rea-
sonable, as the same commitment scheme can be reused
in many proofs. For arguments, however, an attractive
point is that cheating is only possible if the intractabil-
ity assumption used is broken while the protocol is run-
ning ©. This, however, is only true if a new instance
of the commitment scheme is chosen in every run of
the protocol. Our communication complexity for argu-
ments therefore includes communication for setting up
the commitment scheme.

2 Technical Ingredients

Our main result uses partial proofs and bitcommat-
ments with special properties. These are explained here-
after.

2.1 Partial Proofs

We will now state a result implied by [8]. For conve-
nience, we re-formulate it to match our context here.

Y.-protocols

Let a Y-protocol (A, B) be a three move interactive
protocol between a probabilistic polynomial time prover
A and a probabilistic polynomial time verifier B, where
the prover acts first. The verifier is only required to
send random bits as a challenge to the prover.

More precisely, let R = {(a,8)} be a binary relation
and assume that for some given polynomial p(-) it holds
that |8] < p(]e]) for all (a,3) € R. Furthermore, let
R be testable in polynomial time, and let R* denote
the collection of strings a such that, for some string 3,
(a, 3) € R. The string 3 is called a witness for a. For
some (o, ) € R, the common input to both players
is a while § is private input to the prover. For such
given a, let (a,c,z) denote the conversation between
the prover and the verifier. To compute the first and
final messages, the prover invokes efficient algorithms
a(-) and z(-), respectively, using («, #) and random bits
as input. Using an efficient predicate ¢(-), the verifier
decides whether the conversation is accepting with re-
spect to a. The relation R, the algorithms a(-), z(+) and
é(-) are public. The length of the challenges is denoted
tp, and we assume that ¢p only depends on the length
of the common string a.

5Tn any real implementation, the verifier needs to receive some
public parameters of the commitment scheme, and possibly a zero-
knowledge proof that they were chosen correctly

6in contrast to the situation for proofs, where breaking the
assumption at any later time can cause problems

In the present context, we will assume that we are given
Y-protocols satisfying the following security properties.
First, (A, B) satisfies a strong flavour of knowledge
soundness: Let (a,¢, z) and (a,c,z’) be two conversa-
tions, that are accepting for some given a. If ¢ # ¢/, then
a € R* and, on input « and those two conversations,
we can efficiently compute § such that (a, 8) € R. This
is called spectal soundness, and the pair of accepting
conversations (a, ¢, z) and (a, ¢, 2') with ¢ # ¢ is called
a collision . Finally, we assume (A, B) to satisfy spe-
ctal honest verifier zero knowledge. This means that we
are given a (probabilistic polynomial time) simulator M
that on input o € R* generates accepting conversations
with the same distribution as when A and B execute the
protocol on common input « (and A is given a witness
B for a), and B indeed honestly chooses its challenges
uniformly at random. The simulator is special in the
sense that it can additionally take a random string ¢
as input, and output an accepting conversation for «
where c is the challenge.

Monotone Function Families

A function f : {0,1}* — {0,1}, f # 0,1, is called
monotone if the following holds. If f(z1...z,) = 1 and
ify; ...y, € {0,1}* issuch that,fori=1...n,y; = 1if
z; =1, then f(y1...yn) = 1. By F, we denote a family
of monotone functions where each of its members takes
n bits as input. F = UpsoF,, denotes the union of
such collections: a family of monotone functions. In
the notation f, € F, the subscript n to f, serves as a
reminder that f, € F,. Although this is not reflected
in our terminology, we will only consider families F of
monotone functions where its of functions f, can be
computed in time polynomial in n. Furthermore, we
will assume that membership of F can be efficiently

decided.

Let J C {l,...,n}. We define z; € {0,1}" by setting
the #-th position in zy to 1 if i € J and to 0 otherwise.
Then f,(J) denotes f,(zs).

By a monotone Boolean formula we mean a function
given as a Boolean formula consisting of AND-operators
and OR-operators only. A family F of monotone
Boolean formulas is polynomially sized if the number
of operators is polynomially bounded in n.

Partial Proofs Sufficient for Our Context

Let F be a family of monotone functions and let
R be a binary relation as before. For all n, for all
fn € F, and for all [, consider the collection of all
tuples @ = (fn,ai,...,a,) such that a; € {0,1}' for
i=1...n. Let 8 = {8;};er C {0,1}* be given where
I {1,...,n} and |B;] < p(|a;|) for j € I. Then
(a,8) € Rr if and only if f,(I) = 1 and (o;,5;) € R



for j € I. Note that by our assumptions on R and F,
the composite binary relation can be tested efficiently.
The results from [8] imply the following theorem (see
also [9] for the full version).

THEOREM 1 Let (A, B) be a X-protocol for relation R,
satisfying special honest verifier zero-knowledge and spe-
cial soundness. Let F be a polynomially sized family
of monotone Boolean formulas Then there exists a Y-
protocol (A', B') for relation Ry satisfying special hon-
est verifier zero-knowledge and special soundness. The
size tp: of the challenges in (A, B') is equal to tp. If
each formula f, € F reads each input bit only once, then
the communication complezity of (A’, B') is n times that

of (A, B) plus tp: bits.

By a standard rewinding argument, we have the follow-
ing. For definitions of proofs of knowledge and knowl-
edge extractors, see Bellare and Goldreich [3].

COROLLARY 1 Suppose that the input words o to (A, B)
have length | bits, and that the challenge length tp 1is
equal to l as well. Then (A’, B') is a proof of knowledge.
Let A* denote a prover that is successful with probability
€ > 271 in time Ty+. A knowledge extractor runs in
expected time polynomial in T+ and 1/(e —271).

2.2 Commitments with Linear Proof of
Contents

Bit commitment schemes of the kind we use consist
of functions commit : {0,1}'* x {0,1} — {0,1}! and
verify : {0, 1} x {0, 1} x {0,1} — {accept, reject},
whose descriptions are output by a probabilistic polyno-
mial time algorithm G on input 1!, where [ is a security
parameter. The value [, is polynomially bounded in /.
For our purposes here, we require that {, = O(l). We
refer to commit and verify as the public key of the com-
mitment scheme. To commit to a bit b, one chooses r
at random from {0, 1}~ and computes the commitment
C as C' + commit(r,b). The value r masks the bit b.
To verify whether a commitment has been opened cor-
rectly, one verifies whether verify(C,r, b) = accept.

For interactive proofs, we will need bit commitments
to be unconditionally binding. This means that the bit
b is uniquely determined from the commitment C'. Of
course we also need the scheme to hide the bit, but
the best we can get in this case, is that it is computa-
tionally hiding: the distributions of commitments to 0
and and to 1, respectively, are computationally indistin-
guishable: no probabilistic polynomial time algorithm
receiving as input a commitment to 0 or 1, can guess
the bit b with probability significantly better than 1/2.

For interactive arguments, we will use bit commit-
ment schemes with dual properties: wunconditionally

hiding. This means that the distributions of com-
mitments to 0 and and to 1, respectively, are identi-
cal. Now, with respect to the binding property, the
best we can achieve is that the scheme is computa-
tionally binding. This means that no probabilistic
polynomial time algorithm can compute a commitment
that can be opened in both ways: it is infeasible to
compute C € {0,1}}, and ro,71 € {0,1}" such that
verify(C,rg,0) = verify(C,r1,1) = accept, except
with negligible probability.

Unconditionally hiding commitments may in addition
be trapdoor [5] (also called chameleon). For a trap-
door commitment, the generator G outputs in addi-
tion a string 7' called the trapdoor information. Given
the trapdoor, one can cheat the commitment scheme.
More formally, there is a polynomial time algorithm
that on input 7 will produce pairs rg,r; such that
commit(rg,0) = commit(ry, 1) = C, verify(C,ry,0) =
verify(C,ry, 1) = accept, and the distribution of C' is
the same as that of commit(r, b) for random r. We will
assume that, on the other hand, given C' and any pair
rg, 1 such that verify(C,rq, 0) = verify(C,r,1) =
accept, 1t 1s easy to compute T. Note that by the bind-
ing property, it is infeasible to compute the trapdoor in-
formation T" given just the public key of the commitment
scheme. Finally, for an unconditionally hiding trapdoor
commitment scheme, we require that there exists a lin-
ear (i.e., with communication complexity linear in [),
witness hiding [15] proof of knowledge of the trapdoor
T.

When C' = commit(r,b) is a commitment, we define
=C' to be special symbol = followed by the string
commit(r,b). And we extend the verify function such
that verify(—C,r,b) = verify(C,r,1 — b). In other
words, —=C' is a commitment that is opened by opening
the basic commitment C' and negating the resulting bit.
In the following, unless otherwise stated, commitments
may be either basic or negated as described here.

A bit commitment scheme has a linear proof of contents,
if there is a X-protocol (A, B) taking as input (basic)
commitment C' = commit(r,b) and bit b and with the
following properties:

1. (A, B) is a proof of knowledge, satisfying special
soundness, that A knows how to open C' as a com-
mitment to b. More precisely, from two conversa-
tions that constitute a collision, one can efficiently
compute r such that C' = commit(r, b).

2. (A, B) is special honest verifier perfect zero knowl-
edge, with simulator M.

3. The size of the conversation is O(l) bits and the
challenge size tp is linear in [. By some standard
manipulation techniques, we may assume that tg =
1, while the size of the conversation is still O(!) bits.



Note that since commitments to b are assumed to be in-
distinguishable from commitments to 1 — b, the simula-
tor M should output an accepting conversation on input
C' = commit(r,b), 1 —b, except with negligible probabil-
ity. We will assume for simplicity that it always does so
(this holds in our concrete examples).

Regarding the ezistence of the required bit commit-
ments, we note the following. In the Section 4, we give
two example bitcommitment schemes with the proper-
ties stated above: an unconditionally binding one and
another that is unconditionally hiding. Both are based
on the difficulty of computing discrete logarithms. It
turns out (see [9]) that we can construct the commit-
ment schemes required for arguments, under the as-
sumption that a family of special one-way group iso-
morphisms exists. Let f be a one-way isomorphism be-
tween groups K and L. Such a function is called special
if we can efficiently compute a (large) prime T such
that for all y € L we can efficiently compute x with
f(z) = yT'. Such functions f can be realised under both
the discrete logarithm and RSA assumptions. Also, it
is possible to realize a suitable unconditionally binding
scheme based on the factoring problem, more precisely
speaking, based on the r-th residuosity problem.

3 Main Result

3.1 General Approach

We start by presenting a general method for con-
structing a communication efficient perfect honest ver-
ifier zero knowledge proof (A’, B') that a given word z
is a member of an NP-language L. Given (a family of)
Boolean formulas ® that verify witnesses for L and a
bit commitment scheme with negation and linear proof
of contents (A, B), we construct (a family of) monotone
formulas ® and invoke Theorem 1. The prover P will
commit to a witness w for x, after which the prover
P and verifier V will run the protocol (A’, B'), P run-
ning A’, and V running B’ as subroutines, respectively.
P will only be accepted by V if the bits committed to
constitute a witness for z, i.e, # € L. This results in
interactive proofs and arguments for L that are honest
verifier zero knowledge.

Then in the following two sections, we show how to
obtain zero-knowledge in general for these interactive
proofs, resp. arguments. For interactive proofs, we
will require them bitcommitments to be uncondition-
ally binding, while for arguments we require them to be
unconditionally hiding.

Let an input word = € L of length k bits be given, and
let @ be a Boolean formula verifying a witness for z.
Without loss of generality we may assume that @ con-
sists of AND-, OR- and NOT-operators only, with the

NOT-operators occurring at the inputs. Let m denote
the number of different input variables to ®, and let
n denote the number of times that ® reads an input
variable. A monotone formula ®' is obtained from ®
by removing the negations and by renaming the input
variables such that all n references to the inputs refer to
different variables. For example, if ® = (aAb)V(—aA—b),
then we would have ® = (a Ab) V (¢ Ad).

Let ¥ be any monotone formula on n input vari-
ables, and let a set of commitments Dy, .., D, be given.
Then we say that the set of strings rq,...,7, ¥-opens
Dy,...;Dy if U(y1,...,vn) = 1, where 5, = 1 if and
only if verify(D;,r;,1) = accept. Let R be the bi-
nary relation consisting of all pairs (D,r) such that
verify(D,r, 1) = accept. Note that the linear proof
of contents (A, B) that comes with our bit commitment
schemes immediately gives a proof of knowledge for the
relation R: to show that basic commitment C' contains
1, run (A, B) on input C| 1, to show that =C' contains
1, run (A, B) on input C, 0.

Recall that we have assumed that both the challenge size
tp is equal to [ and the size of conversations in (A, B) are
linear in [. Here, [ is the size of a commitment. Taking
into account that (A, B) also satisfies special soundness
and special honest verifier zero knowledge, we have by
Theorem 1 and Corollary 1:

ProrosiTION 1 Let F be a family of monotone Boolean
formulas of polynomuial size, such that for each n, each
fn € F reads each of its n wnput bits exactly once. Let
a bit commitment scheme be given which has a linear
proof of contents (A, B). If commitments Dy, ..., D, of
sizel and ¥ € F,, are given, then there exists an honest
verifier zero knowledge X-protocol (A’, B') showing that
A’ can W-open D1, ..., Dy,. Furthermore, from two con-
versations of (A', B') of form (a,c,z),(a,c,2’), where
¢ # ¢ one can efficiently compute a set of strings that
W-opens Dy, ..., Dp. Thus (A', B') is a proof of knowl-
edge for relation Rx, satisfying special soundness. The
communication complezxity is | bits plus n times that of
(A, B). This corresponds to O(|¥|) bit commitments of
size l.

COROLLARY 2 Suppose that A* is a prover accepted by
the honest verifier B with probability ¢ > 2~'. Then
there exists a probabilistic algorithm FExt that outputs
set of strings that W-opens D1, ..., D,, running A* as a
rewindable blackboz, with expected running time polyno-
mial in Ta+ and 1/(c — 27!), where Ta+ denotes A*’s
running time.

We now consider the following honest verifier zero
knowledge protocol (P, V') for showing that ® is satis-
fiable.



Step 1 : Let z € L and let a witness w = (wy, .., ) be

given by input bits that satisfy ®. For i = 1...m,
P’ now computes basic commitments C; for these
bits w;: P’ puts C; < commit(r;, w;), where r; is
chosen at random from {0, 1}/~. P’ sends these C;’s

to V'.

Step 2 : Number the positions in ® where an input bit

is used (at the input wires) from 1 to n. For j =
1...n, let D; = Cj, if the bit w; is used at this
position, and let D; = =Cj if the bit 1 —w; is used.

Step 3 : Using the protocol (A’, B') guaranteed by Propo-

sition 1, P/ now convinces V that that the bits con-
tained in Dy, ..., D, satisfy the monotone formula
' (that is, Dy, ..., D,, can be ®-opened). Here P’
plays the role of A’ and V' plays the role of B’.

The protocol (P, V') gives rise to the following theo-
rems.

THEOREM 2 Suppose there exists an unconditionally
binding bit commitment scheme which has a linear proof
of contents. Then any L € NP has a constant-round
honest verifier computational zero-knowledge interactive
proof system that proves x € L with error probability
at most 27% using a total of O(|z|°) commitments, for
some constant ¢ depending only on L.

THEOREM 3 Suppose there exists an unconditionally
hiding trapdoor bit commitment scheme which has a lin-
ear proof of contents. Then any L € N P has a constant-
round honest verifier perfect zero-knowledge interactive
argument that x € L, with communication complexity
O(|z|°) - maxz(k,l) bits, where ¢ is a constant depending
only on L. If a prover P* can cheat with probability
¢ > 27% in time Tp+, the prover can break instances of
the commitment scheme of size | with expected running
time time polynomial in Tps and 1/(c — 27F).

PrOOF. In case of interactive proofs, we set k = [,
and execute (P, V’). For interactive arguments, we ex-
ecute (P, V') s times in parallel, where s is minimal
such that sl > k. The security properties are invariant
under parallel composition. Completeness is trivial. As
for soundness, note that if a prover P* has probability
of success greater than 27%, then there exist p1,..., pn
that ®-open Dy,...,D,. Thus, ®(y1,...,v,) = 1
where v; = 1 if and only if verify(D;, p;, 1) = accept.
Recall that by definition, each D; is equal to C; or =C;
for some i. Let V; denote the set of indices j, 1 < j < n,
such that D; was set equal to Cj, and let V/ similarly
denote those where D; was set equal to —~Cj;. Define
the set W as the set of indices j, 1 < j < n, with
v; = 1. We define the bits w; and w}, 1 = 1...m,
by setting w; = 1 if V; N W # ( and 0 otherwise, and
w, = 1if V/NW # 0 and 0 otherwise. Note that

K3

w; — w; — 1 implies that we can find j and j’ such
that verify(Cj, p;, 1) = verify(—Cj, p;j1, 1) = accept.
If we assume that at least one of w; and w} is equal

to 0 for each 7, and put w; = 1, w} = 0 instead
in those cases where w; = w) = 0, it is easy to see
that w = (wn, ..., wn) satisfies ®. In case of interac-

tive proofs, where an unconditionally binding scheme
is used, the case w; = w} = 1 is impossible, so the
error probability is at most 27%. Now for the case of
interactive arguments where unconditionally hiding bit
commitments are used, the case w; = w; = 1 implies
that the prover is breaking the binding property of the
commitment scheme: by definition verify(Cj, p;, 1) =
verify(—=Cj, pjr, 1) = accept implies that C; can be
opened as 0 and 1. Since we may view (P’,V’) as a
Y-protocol satisfying special soundness with challenge
size sl > k, we have similarly to Corollary 2 that the
prover can break the commitment scheme with expected
time running time polynomial in Tp« and 1/(c — 27%),
if the success probability ¢ is greater than 27%. The
latter argument also shows that (P’,V’) is a proof of
knowledge in both cases of interactive proofs and argu-
ments. Concerning honest verifier zero knowledge sim-
ulation, we construct the C;’s as a set of all-0 com-
mitments, and compute the D;’s from this. We then
invoke (s times, in case of the arguments) the honest
verifier simulator of (A’, B’). This simulation is perfect
for unconditionally hiding commitments, and is compu-
tationally indistinguishable for unconditionally binding
commitments. Finally, the communication complexities
are argued as follows. Note that we may assume that
|®| = O(]z|°), where the constant ¢ only depends on
the language L. We also have n = O(]z|°), and that the
communication complexity of (P’, V') is that of (A, B),
except that for arguments it is repeated s times. There-
fore, in the case of interactive proofs, we need communi-
cation corresponding to O(|z|°) bitcommitments of size
k (since we have put k = [), and for arguments, we need
some [k + 1/1]-O(]z|°) bitcommitments of size /. Since
we are counting bits in this case, the communication is

O(|z|°) - maz(k,!) bits.

3.2 Zero Knowledge Interactive Proofs
for NP

The problem that (P’, V') is only honest verifier zero-
knowledge can be solved in two ways: One can use the
general transformation from [10], the basic idea of which
goes back to [2]. Here the prover and verifier do two-
party coinflipping to determine the challenge to be an-
swered by the prover. This requires only the uncondi-
tionally binding commitments that we already assumed.
If in addition an unconditionally hiding commitment
scheme is available, one can in stead use a method due
to Goldreich and Kahan [20], namely to let the veri-



fier commit to the challenge before (P’, V') is executed.
This turns (P’, V') into a constant-round zero knowl-
edge proof system for L. Some commitment schemes
(including our examples) allow the verifier to commit
to the entire k-bit challenge in one commitment of size
O(k) bits 7 This leads to the following results:

THEOREM 4 Suppose there exists an unconditionally
binding bit commitment scheme which has a linear proof
of contents. Then any L. € NP has a computational
zero-knowledge interactive proof system that proves x €
L with error probability at most 2=% using a total of
O(|z|°) + O(k) commitments of size O(k) bits, for some
constant ¢ depending only on L.

THEOREM b Assumption as in in Theorem 4, but as-
sume in addition that there exists an unconditionally
hiding bit commitment scheme allowing commitment to
k bits in a commitment of size O(k) bits. Then any
L € NP has a 4-move computational zero-knowledge
interactive proof system that proves x € L with error
probability at most 27% using a total of O(|z|°) commit-
ments of size O(k) bits, for some constant ¢ depending
only on L.

3.3 Interactive Arguments for NP

To build a zero-knowledge interactive argument
(P,V) from (P’, V'), we use an unconditionally hiding
trapdoor bit commitment scheme with an efficient wit-
ness hiding proof of knowledge of the trapdoor.

Step 1 : The verifier V runs the key generator GG, sends the

resulting public key for the commitment scheme to
the prover P, and keeps the trapdoor T' private.

Step 2 : The verifier V gives a witness hiding proof of

knowledge of the trapdoor to the prover P.

Step 3 : Protocol (P, V') is executed using the commit-

ment scheme instance just generated, where P and
V play the roles of P’ and V', respectively.

The idea is taken from [16]. The protocol as shown here
has 6 moves, but this can be condensed to 4 moves in
the same way as in [16]. The proof of soundness remains
essentially the same, but note that in order to fool V,
the prover P still has to break the commitment scheme,
as follows from the proof of Theorem 3. In the case
of trapdoor commitments we have required that break-
ing the commitment scheme is essentially as difficult as
finding the trapdoor T'. However, the verifier’s witness
hiding proof does not help to do that. Hence the sound-
ness of (P, V') is preserved. Furthermore, the protocol
is now zero-knowledge, since the simulator can use the

"This is done in our scheme from Section 4 by simply replacing
the bit & committed to by any value modulo q.

knowledge extractor for the verifier’s proof of knowledge
to get the trapdoor information 8. Given the trapdoor,
simulation of the rest of the protocol is trivial. The
witness hiding proof costs, by assumption on the com-
mitment scheme, a communication complexity that is
O(l) bits. We then get the following by inspection of
(P, V):

THEOREM 6 Suppose there exists an unconditionally
hiding trapdoor bit commitment scheme which has a
linear proof of contents and a linear, witness hiding
proof of knowledge of the trapdoor. Then any L €
NP has a 4-move perfect zero-knowledge interactive ar-
gument that x € L, with communication complezity
O(|z|°) - maxz(k,l) bits, where ¢ is a constant depend-
ing only on L. If a prover P* can cheat with probability
€ > 2% in time Tp+, the prover can break instances of
the commitment scheme of size | with expected running
time polynomial in Tp. and 1/(c — 27%).

4 Concrete Bitcommitment Schemes

We present two bit commitment schemes with prop-
erties as required in main results. Our examples
have the additional property that commitments can be
negated: the verifier can, on his own, compute from a
commitent C' to b a new basic commitment C’ to 1 — b.
Because of this, for the linear proof of contents, it suf-
fices with a protocol for showing that a commitment
contains 1.

Scheme I, described below, is an unconditionally bind-
ing bit commitment scheme based on the discrete loga-
rithm problem in a group of prime order. It is derived
from the Diffie-Hellman/El Gamal encryption scheme
[13, 14]. For concreteness, we think here of this group
as a subgroup of Z;, where p is a prime and the prime ¢
divides p — 1. But any group of order ¢ would do, such
as an elliptic curve group.

Key Generation : The key generator G for this
scheme chooses large primes p and ¢ such that
qlp — 1, and a random element g € Z; of order q.
Next h and w are chosen at random 1n the group
generated by g. The public key of the commitment
scheme is (p, ¢, 9, h, w).

Commaitment : The function commit is defined as C' =
commit(r, b) « (¢" mod p, w®h” mod p), where r is
chosen at random from Z,,.

Opening : To open the commitment C, the values r
and b are revealed. The algorithm verify(C,r,b)

8 Although this by itself may not produce the trapdoor with
absolute certainty, the simulator can run an exhaustive search for
the trapdoor in parallel with the extractor. This will then produce
the trapdoor in those exponentially few cases where the extractor
fails, while the expected running time remains polynomial



outputs accept if and only if (¢" mod p, w®h” mod
p)-

Negation : Given a commitment C' = commit(r,b) =
(71,72), then C' = (37!, wyy ") is a commitment
to 1 —b.

It follows immediately that this commitment scheme is
unconditionally binding. Under a standard assumption
about Diffie-Hellman/El Gamal encryption the scheme
provides computational hiding of the bit committed to.
Finally, the following protocol (A, B), which is an adap-
tation of Schnorr’s protocol [28], is sufficient for a linear
proof of contents.

Mowve 1 : Let C = (9" mod p, wh” mod p) be a com-
mitment to b = 1, and let C' be common input to A
and B. Let C' = (81,02) be the negation of C'. The
value r is private input to A. Then, A chooses f
at random from Z, and computes a; < g/ mod p
and as « hf mod p. A sends a; and a3 to B.

Mowve 2 : B chooses ¢ at random from Z, and sends
1t to A.

Move 3 : A computes z & f — ¢r mod ¢ and sends z
to B. Finally, B checks that ¢° = a1Jf mod p and
h* = ayd§ mod p

Scheme II concerns a bit commitment scheme that is
unconditionally hiding ®. Tt is also based as on expo-
nentiation in a group of prime order, where computing
discrete logarithms is hard.

Key Generation : Choose two large primes p and g
such that ¢|p — 1. Then select at random two el-
ements g1,gs € Z; of order ¢. Finally, choose
wy,wy at random from Z, and compute h +
97" 95? mod p. The public key is (p, q, 91, g2, h).

Commaitment : The algorithm commit is defined by
C = commit((ry,rs),b) « g7'g5*h® mod p, where
r1, 72 are chosen at random from Z,.

Opening : To open a commitment C, the val-
ues r1, r2 and b are revealed. The algorithm
verify(C, (r1,r2),b) outputs accept if and only if
C = g7 g5*h® mod p.

Negation : Given a commitment C' =
commit((ry,rs),b), then ¢ = C~'hAmodp =
commit((—ry, —r3), 1 —b) is a commitment to 1 —b.

Trapdoor : A trapdoor can be any pair ui,us such
that h = ¢7'g5? mod p. A witness hiding proof of
knowledge of the trapdoor, with linear communica-
tion complexity, is given by Okamoto’s scheme [26].

9The unconditionally hiding multi-bit commitment, derived
from Scheme IT as indicated in Section 3.2, is referred to as Scheme
II’ in the following.

The scheme has the following linear proof of contents

(A, B), taken from [26].

Mowe 1 : Let C = g7*g5*h mod p be a commitment to
b = 1, and let C' be common input to A and B.
The values r; and ry are private input to B. Let
§ denote the negation C~'h mod p of C. Now A
chooses fi, f2 at random from Z,, computes a +
g{1g§2 mod p and sends a to B.

Mowve 2 : B chooses c¢ at random from Z, and sends
it to A.

Mowve 38 : A computes z; < f; — cry mod ¢q and z9
fa — erg mod ¢, and sends z; and z5 to B. Finally,
B checks that g7'g52 = ad® mod p.

5 Concrete Communication Complexi-
ties

Assume we use one of the two example commitment
schemes shown in Section 4 to implement our protocols.
To evaluate their practical potential, we compute the
exact communication complexities that result. For both
commitments schemes, we have to choose the parameter
l such that computing discrete logarithms is infeasible,
which means that [ should be 700 — 1000. Note that
having [ of that length and having just one iteration of
(P', V'), yields an error probability of at most 1/27%0
so we may assume that one iteration suffices and that
k < lin most practical situations. In general we can say
that in the worst case, the formula ® uses every input
bit and its complement exactly once, so that no reuse of
commitments is possible. With these assumptions and
counting for convenience one number modulo p as one
commitment, we get by inspection of the protocols:

PROPOSITION 2 Suppose the zero-knowledge interactive
proof from Theorem 5, resp. the perfect zero-knowledge
argument from Theorem 6, is erecuted using commit-
ment schemes I and II’ from Section 4, resp. commit-
ment scheme II, then assuming that | > k, the com-
munication complezxities will be at most 6n + 2 commit-
ments (of size | bits), resp. bnl 4+ 10! bits, where n is
the number of times a Boolean formula for verifying an
NP witness for L reads an input variable.

A simple computation shows that with for example
about 6 Mbyte of communication, and using &k = 50,/ =
768, n can be up to about 10.000. This might be enough
to prove, for instance, that you know a DES key en-
crypting a given cleartext block to a given ciphertext

block.

We note that in general, our protocol may be signifi-
cantly optimized by building ad hoc as small a formula
® as possible for the problem. Furthermore it may be



possible to find a smaller monotone formula computing
the same function as the one constructed directly from

P.

6 An Application: Oblivious Transfer
and Multiparty Computations

Loosely speaking, the multiparty computation prob-
lem 1is defined by a function f with p arguments and
p participants, such that the #’th participant owns a
value z; of the i’th argument to f. The goal is to de-
sign a protocol such that all participants learn the value
f(z1,...,zp), but no coalition of participants can, even
by deviating from the protocol, learn more about the
inputs that what i1s implied by the own inputs and the
result.

The classical protocols for solving this problem in the
model where only broadcast is available for communica-
tion can be found in [19], [29], with efficiency improve-
ments e.g. in [6]. Here we present a much more sub-
stantial improvement by using our commitment scheme
from Section 4 to implement a fundamental primitive
known as Committed Oblivious Transfer (COT). An effi-
cient COT protocol automatically leads to efficient mul-
tiparty computation protocols by known reductions. A
concrete one, the basic idea of which goes back to [19],
can be found in [7].

A comitted oblivious transfer takes place between two
parties S and R. Initally S has made two commitments
Agp, Ay containing bits ag, a1, and R has made commit-
ment B to bit . The purpose of the protocol is that R
should end up making a commitment C' to bit a,. This
must be done under the conditions that A does not learn
b, and B 1s forced to commit to ap, but does not learn
ai—_p. We have the following result:

THEOREM 7 If the commitment scheme from Section
1s computationally hiding, then there is a protocol that
implements commatted oblivious transfer between poly-
nomially bounded parties, with error probability 2% and
communication complezity corresponding to O(1) com-
mitments of size O(k) bits.

A formal treatment of our COT protocol and its ap-
plication to multiparty computations, in particular the
distinction between static and passive adversaries would
far exceed the space limitation of this paper. Here, we
only give the protocol and an informal sketch of a proof
for it. Note that the commitments from section 4 form
a multiplicative group by componentwise multiplication
modulo p. In the following, when C' is a commitment,
let C' denote the bit contained in C. The idea of the
protocol is that R can ”blind” a commitment from S by
multiplying it by something random, hence S can open
the result without knowing which of two commitment

he is actually opening. Our general interactive proofs
for satisfiability of a Boolean formula allows parties to
show very efficiently that they follow the protocol.

We assume that parties S, R have once and for all set
up their own instance of the commitment scheme and
have proved in zero-knowledge that they know the cor-
responding secret keys, hence that a party can open any
commitment w.r.t. his own public key.

COT Protocol
Input: Commitments Ag, A1 by S, commitment B by
R.

1. R makes a random commitment D, using the pub-
lic key of S. If D = 0, let T' = DAg, else let

T = DAE;I. Thus T is a random commitment,
with distribution independent of B. T is sent to S.

2. R proves in zero-knowledge to S that 7" was cor-
rectly computed, i.e. proves that the following for-
mula is satisfied:

(B=0 AND (TA3' =0 OR TAq = 1))

OR (B=1AND (TAT' =0 OR TA, = 1))

Note that even though some of the commitments
made are with S’s public key, R knows enough
about them to do the proof.

3. If the previous proof was accepted, S computes the
bit contained in T and reveals it to R. Also, S
proves that this bit is correct (S can compute only
the bit, and not the random choices used for con-
struction of T', so an interactive proof is necessary

here).

4. Rmakes a commitment to C' to the bit T@D = ANB,
and sends it to S. Proves also that C' contains the
correct bit, by showing that the formula

(B=0AND TA;' =0 AND C =T)
OR(B=0ANDTA;=1ANDC=1-T)
OR(B=1AND TAT' =0 AND C =T)
OR(B=1ANDTA; =1 AND C =1-T)
is satisfied.

To argue that this protocol has the required proper-
ties, note the following. The communication complexity
follows since in each interactive proof, the verifier can
commit to his challenge bit in one commitment as men-
tioned earlier. Hence proofs take a constant number of
commitments, since the formulas have constant size.

Since T is distributed independently from B, all proofs
are zero-knowledge, and commitments B and C are



never opened, the protocol does not help S to compute
B. Since the protocol can be simulated against any
strategy by R knowing only ANB (by using rewinding in
step 2), the protocol does not help R to compute A1~—B'

It follows from soundness of the proof in step 4 that C'
contains the correct bit, except with negligible proba-
bility.

If this protocol is used as a building block in e.g. the
construction of [7], then a multiparty computation pro-
tocol for evaluating a circuit of size n will take commu-
nication corresponding to O(np?) commitments of size
k bits for an error probability of 27%. Earlier solutions,
such as [6], typically require Q(np?k) commitments.
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