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Abstract — We introduce the public Eve scenario
and show that the secret key rate in this scenario is
bounded by the intrinsic information. This elucidates
previous results and gives new insights in the gap be-
tween formation and extraction of secret information.

Intrinsic information, in its function as an upper
bound on the secret key rate, is generalized to se-
cret key agreement from arbitrary tripartite quantum
states.

I. Public Eve Scenario

We modify the usual secret key agreement from a triple
of random variables X, Y and Z and with secret key rate
S(X; Y ||Z) [3], by imposing the following additional con-
straint on Eve: she can only publicly access her information
Z. More precisely, she must choose a (probabilistic) function
f which is then applied to ZN to obtain Z̄. The value Z̄
together with the description of the function f is then broad-
casted to Alice and Bob. We refer to this scenario as Public
Eve Scenario with secret key rate S̃(X; Y ||Z).

The intrinsic information [4], similar as for the conventional
secret key rate, is an upper bound for the secret key rate in
the public Eve scenario.

Theorem I.1

S(X; Y ||Z) ≤ S̃(X; Y ||Z) ≤ I(X; Y ↓ Z)

Conjecture I.2

S̃(X; Y ||Z) = I(X; Y ↓ Z)

Remark I.3 Since secret key agreement is based on i.i.d.
random variables, it is natural to pose the i.i.d. restriction
on Eve’s action as well. If this is done, Conjecture I.2 holds
true and we obtain an operational definition of the intrinsic
information as secret key rate in this scenario.

Converse to secrecy extraction is the task of the formation
of a probability distribution from secret key. We obtain the
following bound for the formation rate Iform(X; Y |Z) [5].

Theorem I.4

S̃(X; Y ||Z) ≤ I(X; Y ↓ Z) ≤ Iform(X; Y |Z)

The second inequality was proven in [5], where it was also
demonstrated that strict inequality S(X; Y ||Z) < I(X; Y ↓ Z)
can occur. Our proof simplifies and shows that the gap be-
tween the formation of probability distributions and secrecy
extraction may fall into two parts: the first one, between se-
cret key rate and intrinsic information[5], can be removed by
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changing into the i.i.d public Eve scenario; a second gap may
arise between intrinsic information and information of forma-
tion, its existence, however, is still unproven.

II. Secret key agreement from quantum states
Recently, secret key agreement from triples of random vari-

ables has been extended to quantum states ρABE [1, 2]. In
this setting, Alice, Bob, and Eve receive a number of iden-
tical copies of ρABE . Alice and Bob are allowed to per-
form Local Operations and Classical Communication (LOCC)
and may communicate via a public channel. They are
then required to output an identical string that is secure
against any strategy of Eve. The secret key rate is denoted
by KD(ρABE). This scenario reduces to the one for ran-
dom variables in the case of classical quantum states, i.e.
ρABE =

∑
xyz

PXY Z(xyz)|x〉〈x|⊗ |y〉〈y|⊗ |z〉〈z| for o.n. bases

{|x〉}, {|y〉} and {|z〉} with rate KD(ρABE) = S(X; Y ||Z).
The public Eve scenario, which we have introduced above,
can also be generalized to the quantum case. Eve is then re-
quired to perform a joint POVM on her quantum state and
to broadcast her measurement outcome. The secret key rate
in this scenario is denoted by K̃D(ρABE).

Definition II.1 The intrinsic information of a tripartite
quantum state ρABE is defined as

I(ρABE) := inf
E

I(A; B|Z)

where I(A; B|Z) =
∑

z
pzI(A; B)z with I(A; B)z := S(ρA

z ) +

S(ρB
z )− S(ρAB

z ) and ρAB
z := 1

pz
trEzρABE. The minimization

ranges over all POVMs E with elements {Ez}.

This definition reduces to the usual definition for classical
quantum states ρABE .

Theorem II.2

KD(ρABE) ≤ K̃D(ρABE) ≤ I(ρABE).

Both inequalities are sometimes strict.
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