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Abstract — The so-called intrinsic mutual infor-
mation is an important measure in the context
of information-theoretic secret-key agreement. We
prove a property of this information measure which,
in particular, strongly simplifies its computation.
More generally, our result is useful for analyzing the
correlation of two random variables conditioned on a
third one.

I. DEFINITIONS AND MOTIVATION

The intrinsic (mutual) information [2] between two discrete
random variables X and Y, given a third random variable Z,
is defined as

I(X;Y|Z) ==inf I(X;Y|Z) ,
A

where the infimum is taken over all discrete random variables
Z such that XY — Z — Z is a Markov chain. This minimiza-
tion includes, in other words, all discrete conditional proba-
bility distributions, or discrete channels, Pz .

The intrinsic information is useful in a context where two
parties, being connected by a public channel, and having ac-
cess to (repeated realizations of) random variables X and Y,
respectively, want to generate a key being secret even if a
possible adversary possesses some knowledge, specified by Z.
In fact, it was shown [2] that I(X;Y ] Z) is an upper bound
on the rate S = S(X;Y||Z) at which such a key can be ex-
tracted. Another recent result [3] states that I(X;Y|Z) is a
lower bound on the rate at which secret-key bits are required
for distributing pieces of information X and Y by public com-
munication, leaving a possible wire-tapper with no more in-
formation than Z.

Since the intrinsic information is defined by an infimum
ranging over the set of all possible discrete conditional proba-
bility distributions Pz, it is a priori not easy to compute. In
particular, to prove that I(X;Y|Z) > 0 holds, it is not enough
to show that I(X;Y|Z) is strictly positive for all Markov
chains XY — Z — Z: The minimum might not be attained
by any particular channel since the space of discrete channels
is not a compact set. Our result is a step towards the better
understanding of I(X;Y|Z): We prove that the minimum is
indeed taken by a specific channel P7I » and, moreover, that
this minimum can be reached for a channel whose output al-
phabet is not larger than the alphabet of Z.

As a consequence, the following is true for all random vari-
ables X, Y, and Z (where the range Z of Z is finite): If there
exists a Markov chain XY — Z — Z such that I(X;Y|Z) =0

holds, then there exists a Markov chain XY — Z — Zg,,

ISupported by the Swiss National Science Foundation (SNF).
2Supported by Canada’s NSERC.

e-mail: renner@inf.ethz.ch

e-mail: wolf@iro.umontreal.ca

where Zg, is now a ﬁﬁite random variable with range Za, =
Z, such that I(X;Y|Zan) = 0 holds.

II. MAIN RESULTS AND CONCLUSIONS

Theorem. If the range Z of Z is finite, then there exists a
finite random variable Z, having the same range Z, such that
XY — Z — Z is a Markov chain and

I(X;Y | 2)=I1(X;Y|2Z) .

The infimum over discrete channels from Z to Z in the
definition of the intrinsic information can thus be replaced by
a minimum over channels with output alphabet Z.

Corollary 1. If the range Z of Z is finite, then

I(X;Y | Z) =minI(X;Y|2)
A

where the minimum is taken over all random variables Z with
range Z such that XY — Z — Z is a Markov chain.

In particular, this result simplifies the task of proving that
the intrinsic information of a given triple of random variables
is non-vanishing [1].

If and only if I(X;Y|Z), the mutual information of random
variables X and Y with respect to Z, vanishes, then X and Y’
are independent conditioned on Z. This immediately proves
the following corollary.

Corollary 2. If the range Z of Z is finite, then the following
statements are equivalent:

1. There exists a discrete random wvariable Z such that
XY -Z—-Zisa Markov chain, and X and Y are
independent conditioned on Z.

2. There exists a finite random variable Z with range Z
such that XY — Z — Z is a Markov chain, and X and
Y are independent conditioned on Z.

3. I(X;Y | Z)=0.
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