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Abstract. The concept of group signatures was introduced by Chaum
et al. at Eurocrypt '91. It allows a member of a group to sign mes-
sages anonymously on behalf of the group. In case of a later dispute a
designated group manager can revoke the anonymity and identify the
originator of a signature. In this paper we propose a new e�cient group
signature scheme. Furthermore we present a model and the �rst real-
ization of generalized group signatures. Such a scheme allows to de�ne
coalitions of group members that are able to sign on the group's behalf.

1 Introduction

In [6] Chaum and van Heyst proposed a new type of signature scheme for a group
of entities, called group signatures. Such a scheme allows a group-member to sign
a message on the group's behalf such that everybody can verify the signature but
no one can �nd out which group member provided it. However, there is a trusted
third party, called the group manager, who can in case of a later dispute reveal
the identity of the originator of a signature. The group manager can either be a
single entity or a number of coalitions of several entities (e.g. group members).
This concept can be generalized to allow de�ned subsets of all group members
to jointly sign a message on behalf of the group.

An application of group signature schemes is a company needing a corporate
identity. Members of the company can sign contracts with customers such that
a customer does not know who actually signed the contract. If a problem with
a particular contract occurs later, the company can �nd out which employee is
to be held responsible.

1.1 Related Work

There exist several other group-oriented concepts for signature schemes. The
most important ones are multi-signatures [3,9,15] and proxy signatures [14].
Multi-signatures can be seen as generalized group signature without the ability
of \opening" signatures, while proxy signatures are group signatures that do not
provide anonymity.

Solutions for group signature schemes were �rst presented in [6] and later
in [7]. We discuss these schemes brie
y. In [6] four di�erent schemes were pro-
posed. Three of them require the group manager to contact each group member



in order to �nd out who signed a message. These scheme provide computa-
tional anonymity, whereas the forth scheme provides information theoretical
anonymity. For two of the schemes it is not possible to add a new member
after the scheme is set up (including the scheme giving information theoretical
anonymity). In none of the proposed schemes it is possible to distribute the
functionality of the group manager e�ciently.

Later, Chen and Pedersen proposed two new schemes in [7] providing infor-
mation theoretical anonymity and computational anonymity, respectively. These
schemes allow to add new members after the setup of the system and to distribute
the functionality of the group manager. They are based on proofs of knowledge
of one out of several discrete logarithms, each being the secret key of a group
member. The proofs they apply have the special property that when knowing
all secret keys, one can tell which one was used in the proof. To realize the
group manager's ability to open signatures, two such proofs of knowledge must
be used in parallel, where for one the manager is told the secret keys of all group
members. However, this solution has the drawback that the group manager can
falsely accuse a group member of having signed a message: she therefore com-
putes one of the proofs of knowledge using the known secret key of the member
she wants to accuse. This risk can be weakened, but not prevented, by sharing
the functionality of the group manager. To solve this problem, some kind of
disavowal protocol would be needed.

1.2 Our Results

In this paper we propose a group signature scheme where the manager cannot
falsely accuse group members (even if she is also a group member) and which
is also more e�cient than all the previously proposed schemes. Furthermore,
this scheme is extended to a generalized group signature scheme that is also
presented. In both schemes, the functionality of the group manager can be shared
such that the identity of a signer can still be revealed e�ciently. Both schemes
allow to add (or remove) group members after the initial setup. They provide
computational anonymity which we believe is satisfactory because the security of
the signature scheme itself is also computational (as is the case for all signature
schemes).

The paper is structured as follows. In the next section we formalize the con-
cept of (generalized) group signatures schemes. The preliminaries are given in
Section 3, and in Section 4 we formalize di�erent protocols for proving knowledge
about discrete logarithms. This formalization allows a compact and comprehen-
sive description of the new group signature schemes in Section 5. An example
of a generalized group signature scheme is also given. In Section 6 we present
extensions to the scheme, such as distributing of the functionality of the group
manager.



2 De�ning Group Signature Schemes

In this section we de�ne the generalized concept of group signature schemes.
Let P = fP1; :::; Png be a set of group members and M be a designated entity,
called group manager. The set of all authorized coalitions of group members
� � 2P is called authority structure. The structure must be monotone, i.e., for
two sets S and S 0 2 2P , if S 2 � and S 0 � S, then also S 0 2 � . If � =
ffP1g; fP2g; :::; fPngg, we call the group signature scheme simple (this is the
only authority structure we do not require to be monotone).

A (generalized) group signature scheme for P and M with respect to �
consists of four procedures:

setup: On input � this multi-party protocol between all members in P and M
outputs the group public key Y , to each group member Pi 2 P a secret key
xi, and an opening secret key ! to the group manager M .

sign: On input a message m, the group public key Y , the structure � , the
coalition S, and the corresponding secret keys xi, this multi-party protocol
between members in some S 2 � outputs a signature s on m.

verify: On input a message m, the group public key Y , the structure � , and a
signature s, this algorithm outputs yes if and only if the signature is correct.

open: On input a message m, the group public key Y , the structure � , a signa-
ture s and the opening secret key !, the algorithm outputs S 2 � (i.e., the
set of group members that signed m) and a proof that S indeed signed m.

In the procedures being multi-party protocols the private inputs of the di�erent
parties must of course remain secret during and after the execution. The require-
ment that open also outputs a proof is often omitted but is essential if the trust
to be put into the group manager is to be minimized.

The group publishes its public key Y , the authority structure � , and some
system parameters. A group signature scheme must satisfy the following prop-
erties:

1. Only authorized coalitions S of group members, i.e., S 2 � , can sign. The
correctness of a signature can be publicly veri�ed using Y and � .

2. It is not possible to �nd out which coalition S 2 � signed a message
(anonymity) or whether two di�erent signature are signed by the same coa-
lition (unlinkability).

3. In case of dispute, the group manager can open a signature, i.e., �nd out
which coalition signed a message, by running the algorithm open

4. The group manager must only be involved in the procedures setup and open.

These properties are demanded in all previous papers and further properties
follow from them, for instance the property that a coalition must not be able
so sign in the name of another coalition. However, the following natural prop-
erties should also be satis�ed by a group signature scheme. The property 5 was
formulated as an open problem in [6] and achieved �rst in [7].



5. To decrease the trust to put in the group manager, it should be possible to
distribute her role among a set of entities such as the members of the group.

6. The group manager is only trusted not to open signatures at will and is not
trusted with regard to anything else.

When considering the e�ciency of a scheme, the following parameters are of
particular interest: the amount of computation in the algorithms setup, sign,
verify, and open, the size of the group public key, and the length of signatures.
The possibility of adding (or removing) new group members after the initial
setup falls also in this category, namely in the e�ciency of the algorithms setup
(i.e., whether it is possible to run it incremental or not).

3 Preliminaries

In this section a variation of the ElGamal encryption scheme is described. This
variation is used as a building block for both group signature schemes we present.
We give a formal de�nition of secret sharing schemes and describe an example.
Secret sharing is used for constructing the generalized group signature scheme.

3.1 ElGamal Encryption Variant

The original encryption scheme was proposed by ElGamal [10]. In this paper we
interchange the role of the base and the public key and get the following scheme
with the same security properties. Let G be a �nite cyclic group of prime order q
and let g 2 G be a generator of G such that computing discrete logarithms to the
base g is infeasible. In order to encrypt a messagem for an entity with public key
z = gx, one �rst chooses � randomly in Zq and then encrypts m by computing
the pair (A;B) = (z�; g�m). The entity knowing the secret key x can decrypt
the message m by calculating

B

Ax�1
=

g�m

gx�x�1
= m :

3.2 Secret Sharing

A secret sharing scheme is a method for distributing a secret � among a set of n
participants P = fP1; :::; Png. Each participant Pi obtains a share &i of the secret
� such that every quali�ed subset S of P can reconstruct � by using algorithm
�� . The following must hold:

8S 2 � : � = �� (S; f&ijPi 2 Sg) :

The union of all quali�ed subsets � � 2P is called the access structure and is
required to be monotone. A common special case is a threshold structure where



for a threshold k the access structure � is de�ned as fS � 2P
�� jSj � kg. Every

access structure � has a natural dual access structure � �:

S 2 � � () �S =2 � ;

where �S denotes the complement of S in P . If � is monotone, then � � is also
monotone and we have (� �)� = � . If � is a threshold structure, then so is � �. A
secret sharing scheme is called perfect if the participants forming a non-quali�ed
subset of P are not able to obtain any information on �. A secret sharing scheme
is ideal if it is perfect and the secret and the shares are of the same length.

To construct the shares for a given secret �, we employ a nonstandard al-
gorithm that, given the shares of a non-quali�ed set, outputs the shares for the
remaining participants. Formally, the algorithm 	 which takes as inputs the ac-
cess structure � , a non-quali�ed set of participants N =2 � , the set f&ijPi 2 Ng
of their shares, and the secret � and outputs the set f&j jPj 2 �Ng, i.e.,

	(�;N ; f&ijPi 2 Ng; �) = f&j jPj 2 �Ng :

The algorithm relies on the fact that given the secret and the shares of a non-
quali�ed set participants N , it is possible to construct a complete set of shares.

As an example of a threshold secret sharing scheme with n participants and
threshold k, we present Shamir's scheme [18]. A secret � (an element of a �-
nite �eld GF(q), with q > n) is shared by randomly choosing the coe�cients
�1; :::; �k�1 2 GF(q) of the polynomial

f(X) = �k�1X
k�1 + :::+ �1X + � (mod q) :

The share for participant Pi is then calculated as &i = f(pi), where pi is a publicly
known element of GF(q) associated with participant Pi, e.g. pi = i. Given k or
more shares the function f and thus � can be found by Lagrange interpolation
on the points (pi; &i). This scheme is ideal.

4 Proving Knowledge of Discrete Logarithms

In this section we de�ne and formalize the building blocks for our scheme. They
are based on di�erent interactive proofs of knowledge of discrete logarithms that
are made non-interactive using the techniques of [17]. To avoid confusion with
the terminology of non-interactive proofs of knowledge, we call these building
blocks signatures of knowledge.

The algebraic setting is as follows. Let G be a �nite cyclic group of prime
order q and let g; g1; :::; gn 2 G be generators of G such that computing discrete
logarithms to any of the bases is infeasible. A public key yi is constructed by
computing yi = gxi with the secret key xi chosen at random from Zq. The symbol
k denotes the concatenation of two binary strings (or of the binary representation
of group elements and integers). Finally, let H : f0; 1g� ! f0; 1g` (` � 128)
denote a one-way hash function.

The �rst building block we de�ne is a signature of knowledge of the discrete
logarithm of a public key y to the base g.



De�nition 1. A pair (c; s) satisfying

c = H(gkykgsyckm)

is a signature of knowledge of the discrete logarithm of a group element y to the
base g for the message m and is denoted by SKDL(g; y;m).

Basically, such a signature of knowledge is a Schnorr signature (see [17]) with a
slightly di�erent argument to the hash function. A SKDL can be computed only
if the secret key x is known, by choosing r at random from Zq and computing c
and s according to

c = H(gkykgrkm)

and

s = r � cx (mod q):

The values gr, c, and s are often called commitment, challenge, and response,
respectively, although the \proof" is non-interactive. If the context is clear then
the hashing of bases and public keys could be omitted.

Another building block we use is a signature of knowledge of the discrete
logarithm of one out of several public keys yi without revealing which one. Such
proof-systems were �rst introduced in [8].

De�nition 2. A 2n-tuple (c1; :::; cn; s1; :::; sn) satisfying

nX
i=1

ci = H(gky1k:::kynkg
s1yc11 k:::kg

snycnn km) (mod q)

is a signature of knowledge of the discrete logarithm of one group element
out of the list fy1; :::; yng to the base g for the message m and is denoted by
SKDL

�
n

1

�
(g; y1; :::; yn;m).

A SKDL
�
n

1

�
(g; y1; :::; yn;m) can only be given if at least one of the secret keys

is known. We now show how to compute such a signature. Assume that the
known secret key is x1. The prover chooses r; s2:::; sn; c2; :::; cn randomly in Zq

and computes t1 = gr and ti = gsiycii for i = 2; :::; n. Then he computes c1 and
s1 according to

c1 = H(gky1k:::kynkt1k:::ktnkm)�
nX
i=2

ci (mod q)

and

s1 = r � x1c1 (mod q):

The prover has thereby computed SKDL
�
n

1

�
(g; y1; :::; yn;m) = (c1; :::; cn; s1; :::; sn).



The idea behind this is the fact that a SKDL can be forged if the challenge c
is known before the computation of the commitment t. The veri�cation condition
of SKDL

�
n

1

�
is a linear equation over the ci's and therefore all but one ci can be

chosen before computing the commitments. It follows that at least for one yi the
discrete logarithm must be known and one of the partial SKDL's must be true.

In [8] such proof systems were generalized to proof systems for proving the
knowledge of all discrete logarithms of one out of several de�ned subsets of the
set of public keys Y = fy1; :::; yng without revealing any further information.
Formally, let � denote a monotone set of subsets of Y , i.e., � � 2Y . By combining
n signatures of knowledge SKDL(g; yi) and a secret sharing system with access
structure � �, it is possible to construct a system for proving the knowledge of
the discrete logarithms of all yi 2 S for some S 2 � , without saying which subset
S .

De�nition 3. A 2n-tuple (c1; :::; cn; s1; :::; sn) satisfying

8S 0 2 � � : H(gky1k:::kynkg
s1yc11 k:::kg

snycnn km) = ���(S
0; fci j yi 2 S

0g)

is a signature of knowledge of the discrete logarithm of all yi 2 S fy1; :::; yng to
the base g for some S 2 � for the message m. Such a signature is denoted by
SKDL[� ](g; y1; :::; yn;m).

This signature system is similar to the one in De�nition 2; here the secret sharing
scheme implies conditions on the (partial) challenges ci by interpreting them
also as shares, whereas in De�nition 2 we have only one condition (i.e., a linear
equation) on the challenges. If the challenges and the shares do not have the same
domain, a mapping must be introduced (for further technical details see [8]). Let
us show how such a signature of knowledge (c1; :::; cn; s1; :::; sn) can be computed.
Assume that x1; :::; xj are the known secret keys and that S = fP1; :::; Pjg 2 � .
The prover chooses r1; :::; rj ; sj+1:::; sn; cj+1; :::; cn randomly in Zq and computes

� = H(gky1k:::kynkgr1k:::kgrjkgsj+1y
cj+1
j+1 k:::kg

snycnn km) ;

fc1; :::; cjg = 	(� �; fPj+1; :::; Png; fcj+1; :::; cng; �) , and

sk = rk � ckxk (mod q) for k = 1; :::; j :

For the de�nition of the function 	 see Section 3.2.
Another primitive often used in cryptography (e.g. [5]) is a signature that

the logarithms of two group elements with respect to two di�erent bases are the
same. Such a signature also implies the knowledge of these logarithms.

De�nition 4. A pair (c; s) satisfying

c = H(hkgkzkykhszckgsyckm)

is signature of equality of the discrete logarithm of the group element z with
respect to the base h and the discrete logarithm of the group element y with
respect to the base g for the message m. It is denoted by SEQDL(h; g; z; y;m).



This signature of equality can be seen as two parallel signatures of knowledge
SKDL(h; z;m) and SKDL(g; y;m) where the exponent for the commitment, the
challenges, and the responses are the same. By using several SKEQ in parallel
and implying conditions on their commitments (similar as in the De�nitions 2
and 3), one obtains the signature systems SEQDL

�
n

1

�
(h; g; z1; y1; :::; zn; yn;m)

and SEQDL[� ](h; g; z1; y1; :::; zn; yn;m), respectively.

Our last building block are signatures of knowledge of a representation. The
respective proof systems were �rst introduced in [4]. Let y =

Qn

i=1 g
xi
i for some

x1; :::; xn 2 Zq.

De�nition 5. A (n+1)-tuple (c; s1; :::; sn) satisfying

c = H(g1k:::kgnkyky
c

nY
i=1

gsii km)

is a signature of knowledge of a representation of a group element y with respect
to the bases g1; :::; gn for the messagem. It is denoted by SKREP (g1; :::; gn; y;m).

We now show how this signature of knowledge of a representation can be calcu-
lated from x1; :::; xn. The prover chooses r1; :::; rn at random from Zq, computes
t =

Qn

i=1 g
ri
i ,

c = H(g1k:::kgnkyktkm) (mod q);

and

si = ri � xic (mod q) for i = 1; :::; n

and thus obtains an SKREP (g1; :::; gn; y;m) = (c; s1; :::; sn). If the bases gi are
chosen in a random or pseudo-random manner, computation of another than the
known representation is believed to be as hard as the discrete logarithm problem
and is called the representation problem. For further discussion see [4].

5 Construction of a Group Signature Scheme

In this section an e�cient simple group signature scheme and a generalized
group signature scheme are proposed. They are based on the signature systems
SEQDL

�
n

1

�
and SEQDL[� ], respectively. These underlying systems already ful�ll

the properties of a group signature scheme except those related to the group
manager's capability of \opening" a signature.

In the following we present e�cient solutions to achieve the missing properties
by using a variation of the ElGamal encryption scheme (see Section 3) and the
techniques discussed in the previous section. The solutions further allow a simple
way of distributing the functionality of the group manager, as will be shown in
Section 6.



5.1 An E�cient Simple Group Signature Scheme

The algebraic setting is the same as in Section 4. In addition, let z = g! denote
the public key of the group manager and ! her secret key. Each group member
Pi chooses his secret key xi randomly in Zq and computes the public key yi =
gxi . The group's public key consists the list of all members' public keys Y =
(y1; :::; yn) and is published together with the manager's public key and the
system parameters.

The idea behind the scheme is that in order to sign a message, a group
member encrypts one of the public keys of Y = fy1; :::; yng with the public key
of the group manager and proves that

{ he encrypted one of the yi's and that

{ he actually knows the discrete logarithm of the encrypted key.

From this follows, that the group member must have encrypted his public key.
More formally, to generate a signature of a message m, the group member Pj
executes the following steps:

1. choose a randomly in Zq

2. encrypt yj by computing A = za and B = yjg
a

3. calculate (c1; :::; cn; s1; :::; sn) = SEQDL
�
n

1

�
(z; g; A; B

y1
; :::; A; B

yn
;m)

4. calculate (~c; ~s) = SKDL(g;B;m)

The computed group signature is the tuple (A;B; c1; :::; cn; s1; :::; sn; ~c; ~s) and
can be veri�ed by checking the correctness of SEQDL

�
n

1

�
(z; g; A; B

y1
; :::; A; B

yn
;m)

and SKDL(g;B;m).
The �rst signature assures that (A;B) is the encryption of an element of

the list Y and the second signature guarantees that the signer actually knows
the discrete logarithm of the public key encrypted in (A;B). The signer thus
proves indirectly his knowledge of the discrete logarithm of an element of Y and
therefore that he is a member of the group P . It can easily be seen that only
group members can sign messages.

To open a valid signature the group manager decrypts (A;B) and immedi-
ately obtains the public key of the signer. Assume that the group member Pj
has signed. By computing the signature of equality

SEQDL(g; z; B=(yj); A; Pj)

the group manager can assure that she opened the signature correctly and that
indeed Pj has issued this signature.

5.2 A generalized Group Signature Scheme

The system parameters are the same as for the simple group signature scheme. In
addition to all public keys and to the system parameters, an authority structure
� must be published.



The idea of the generalized scheme is similar to the one of the simple scheme.
To sign a message m all members of an authorized coalition prove that each of
them encrypted an element of Y = fy1; :::yng and that they know the discrete
logarithms of the encrypted values. Furthermore, they must also prove that the
encrypted elements are all di�erent. The problem with this approach is that the
number of encryptions equals the size of the coalition, which should be kept
secret. Therefore, the coalition must also encrypt some dummy values in order
to provide n encryptions.

More formally, to generate a signature of a message m, the group members
forming an authorized set S 2 � execute together the following steps:

1. { choose a1; :::; an, and bi for all i with yi =2 S randomly in Zq

{ for all yj 2 S encrypt yj : Aj = zaj , Bj = yjg
aj

{ for all yi =2 S encrypt gbi : Ai = zai , Bi = gbigai

2. calculate (c1; :::; cn; s1; :::; sn) = SEQDL[� ](z; g; A1;
B1
y1
; :::; An;

Bn

yn
;m)

3. calculate (~ci; ~si) = SKDL(g;Bi;mkc1k:::kcnks1k:::ksn) for i = 1; :::; n

Member Pj must calculate the signature SKDL(g;Bj ;m) and also parts of the
signature in Step 2 alone in order to hide his secret key from the other members.
All other computations should be performed by all group members on their own
in order to assure themselves of the correctness of the outcome. The random
choices in these common computations must be agreed upon by the group mem-
bers in advance, for instance by choosing a random string each, committing to
the string by hashing it, exchanging these commitments, then exchanging the
random strings, and �nally taking the XOR of all these random strings. The
resulting group signature is the tuple (A1; B1; :::; An; Bn; c1; :::; cn; s1; :::; sn; ~c; ~s)
and can be veri�ed by checking the correctness of the signatures of knowledge
SEQDL[� ](z; g; A1;

B1
y1
; :::; An;

Bn

yn
;m) and SKDL(g;Bi;m) for all i.

The �rst signature assures that the list ((A1; B1); :::; (An; Bn)) contains the
encryptions of some yj 2 Y such that the corresponding Pj 's form an authorized
coalition. The signatures generated in Step 3 assure that the authorized coalition
was really involved, i.e., that the discrete logarithms of the encrypted yj 's are
known. Here, the signature of Step 2 is appended to the message in order to
bind the two steps together. This prevents the reuse of a SKDL in another run
of the scheme.

Again, it is easy to see that the group manager can �nd out which coalition
provided the signature by checking the validity of the signature and decrypting
all pairs (Aj ; Bj). Note that a coalition cannot encrypt a public key of a member
Pi =2 S not participating in the signing because then they could not provide the
corresponding signature in Step 3 and therefore the group signature would not
be valid. By computing the signatures of equality

SEQDL(g; z; B=(yj); A; Pj)

for all Pj having participated in the signing, the group manager can assure that
she opened the signature correctly.



Remark. The signature can be made shorter if all ~ci are the same, i.e., all sig-
natures SKDL(g;Bi;m) are merged and are veri�ed simultaneously by checking
the equation

~c = H(gkB1k:::kBnkg
~s1B~c

1k:::kg
~snB~c

nkm) :

Of course, the signatures must then be computed in parallel and ~c calculated
accordingly. This choice also binds Steps 2 and 3 together, i.e., the concatenation
of the �rst signature to the message is not needed in this case. This is applied
in the following example.

5.3 An Example for a Threshold Group Signature Scheme

In this section we give an example for a generalized group signature scheme
with a threshold authority structure. Let k be the minimum number of members
that must cooperate in order to sign and let f(x) =

Pk�1
i=0 �ix

i denote the
polynomial of a secret sharing scheme with threshold k as described in Section
3.2. To generate a signature of a message m, the group members forming an
authorized set S, i.e., jSj � k, execute the steps below. In Step 2 it is indicated
when the calculations must be performed by a speci�c member of the coalition,
whereas in Step 3, all calculations for a speci�c j must be performed by member
Pj for Pj 2 S. All other computations should by done by the coalition members
on their own using the agreed-on random string.

1. { choose a1; :::; an, and bi for all i with yi =2 S randomly in Zq

{ for all yj 2 S, member Pj encrypts yj : Aj = zaj , Bj = yjg
aj

{ for all yi =2 S encrypt gbi : Ai = zai , Bi = gbigai

2. compute SEQDL[� ](z; g; A1;
B1
y1
; :::; An;

Bn

yn
) = (�0; :::; �k�1; s1; :::; sn;m) :

{ for all yj 2 S, member Pj chooses rj randomly in Zq and calculates
tz;j = zrj and tg;j = grj

{ for all yi =2 S choose ri and ci randomly in Zq and compute tz;i = zriAci
i

and tg;i = gri(Bi

yi
)ci

{ c = H
�
z


g

A1



B1
y1



:::

An



Bn

yn



tz;1

tg;1

:::

tz;n

tg;n

m�
{ choose �0; :::; �k�1 such that f(i) = ci (mod q) for all ijyi =2 S and
f(0) = c (mod q)

{ for all yj 2 S, member Pj computes sj = rj � f(j)aj (mod q)

{ for all yi =2 S set si = ri

3. calculate the combined signatures SKDL(g;Bi;m) = (~c; ~s1; :::; ~sn):

{ for i = 1; :::; n choose ~ri randomly in Zq

{ for i = 1; :::; n compute ~ti = g~ri

{ ~c = H(gkB1k:::kBnk~t1k:::k~tnkm)



{ for i = 1; :::; n compute ~si =

�
~ri � ~c(xi + ai) (mod q) if yi 2 S
~ri � ~c(bi + ai) (mod q) if yi =2 S

The group signature of m is the tuple (�0; :::; �k�1; s1; :::; sn; ~c; ~s1; :::; ~sn). Note
that instead of all ci's, the values �0; :::; �k�1 are included in the signature. This
makes the signature shorter but not less secure because c and all ci's are uniquely
determined by �0; :::; �k�1.

The group signature can be veri�ed by checking the following equations:

�0 = H
�
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and

~c = H(gkB1k:::kBnkg
~s1B~c

1k:::kg
~snB~c

nkm)

where

f(x) = �0 + �1x+ :::+ �k�1x
k�1 (mod q):

5.4 Security and E�ciency Considerations

Let us shortly discuss the security properties of the generalized group signature
scheme (which hold also for the simple scheme).

Non-members cannot sign: If a non-member would be able to forge a group sig-
nature, he would also be able to forge Schnorr signature.

Signatures are unlinkable and anonymous: Unlinkability follows from the prop-
erties of SEQDL[� ] and from the fact that the yi's are randomly encrypted,
which also guarantees anonymity.

Authorized coalitions cannot sign on behalf of another coalition: Clearly, a coa-
lition cannot sign on behalf of a coalition that includes members that are
not included in itself. If a coalition contains an true authorized subset, some
members try to make it appear as if they were not involved in the signing.
This attack is prevented by the mutually agreed random string.

The group manager cannot falsely accuse members: This is assured by the proof
the group manager must provide as evidence in the procedure open.

With regard to e�ciency, all algorithms except open have e�ciency linear in
the number of group members. The size of the group's public key and the length
of signatures are also linear in the number of group members. The algorithm
open is independent of the group's size (however, �nding the identity of a signer
given his key requires a look up in a database).

Comparing the second scheme of [7] and our simple group signature scheme,
it turns out, that our scheme is approximately four times more e�cient in terms
of computations of the signer and signatures are about the same ratio shorter.
Furthermore, in [7] the algorithm open has an e�ciency that is linear in the
group's size.



6 Extensions

In this section we show how the functionality of the group manager can be shared
among several parties (e.g. among the group members) and present a method
for reducing the size of the group's public key.

6.1 Sharing the Functionality of the Group Manager

To obtain higher security against fraudulent opening of signatures, the capability
of the group manager can be shared among several managers according to an
access structure such that only prede�ned subsets of the managers are able to
cooperatively open a signature.

To achieve this, the group manager's secret key ! must be shared among
the managers and exponentiation with !�1 must be possible in a distributed
manner without leaking information about the shares.

For an access structure with threshold t and k managers, a realization is
based on Shamir's secret sharing scheme [18] and Feldman's veri�able secret
sharing scheme [11]. A solution to powering with !�1 is described in [12] for the
case t < k=2 if all managers are honest and for the case t < k=3 if up to t of the
managers may be actively cheating.

More general access structures are possible if exponentiation with !�1 is
avoided, i.e., if signatures are opened as follows. Compute B!=A and then com-
pare the result with the list fy!1 ; :::; y

!
ng. This list can be (pre-)computed (without

revealing !) during the setup of the system1. Then, for instance the monotone
circuit construction of Benaloh and Leichter [1] can be applied over GF(q) and
powering B with ! can be achieved by multiplying all B!j , where !j denotes
the share of a manager in a quali�ed set.

6.2 Reducing the Size of the Group's Public Key

The size of the group's public key can be reduced using a technique proposed by
Blom for public key distribution [2]. Let � be a publicly known generator matrix
of an (n; k) MDS code over Zq. The group's public key now becomes fy1; :::; ykg.
The public key of member Pj is then computed as

~yj =

kY
i=1

y
�ij
i ;

where �ij denotes the element of � in row i and column j. These public keys
are then used in Step 2 of the signature generating procedure. The secret keys

1 The computation of such a list can be avoided if normal ElGamal encryption is used
in our group signature scheme. Then the signature systems in Step 2 and 3 must be
adjusted: in Step 2 the Ai's instead of the Bi's must be divided by the respective
yi's. and in Step 3 the signatures SKDL(g;Bi;m) must be replaced by signatures
SKREP(g; z; Bi;m). This change would make the signatures somewhat longer, but
the public key of the signer could be computed directly as Ai=B

!

i .



of the individual group members are computed similarly. This method has the
disadvantages that a trusted third party is needed to compute the group's public
and secret keys, and that if more than k group members collude, they can �nd
out all secret keys and therefore sign on behalf of any authorized set. Hence there
exists a trade-o� between the size of the group's public key and the security.

7 Open Problems

In all previously proposed schemes, as well as in our scheme, the size of the
group's public key is linear in the number of group members. It is an open
problem to construct a group signature scheme where the size of the public key
and the amount of computation for signing and verifying does not depend on
the size of the group (the only proposed schemes [13,16] with �xed size public
keys were broken).
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