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Abstract

Proof systems for knowledge of discrete logarithms are an important primitive in cryp-
tography. We identify the basic underlying techniques, generalize these techniques to prove
linear relations among discrete logarithms, and propose a notation for describing complex
and general statements about knowledge of discrete logarithms. This notation leads directly
to a method for constructing efficient proof systems of knowledge.

1 Introduction

Many complex cryptographic systems, such as payment systems (e.g. see [1, 2, 4]) and voting
schemes [11], are based on the difficulty of the discrete logarithm problem. These systems make
use of various minimum-disclosure proofs of statements about discrete logarithms [13, 7, 6, 10].
Typical examples are efficient proofs of knowledge of a discrete logarithm which are based on
Schnorr’s digital signature scheme [18] and systems for proving the equality of two discrete
logarithms, as used in [8].

The goal of this paper is to identify the basic techniques for proving statements about
discrete logarithms, to generalize them, and to define a formal notation for specifying statements
about discrete logarithms that can be proved using these generalized techniques. In particular,
the notation allows to define statements about the knowledge of discrete logarithms, about
(linear) relations among them, and about monotone boolean functions whose atoms are also
statements. This notation then leads to a method for deriving efficient proof systems from
specifications.

Similar methods for constructing complex proof systems have already been presented by De
Santis et al. [12] and independently by Cramer et al. [10]. In particular, given proof systems for
single statements, they show how to construct a proof system for any monotone boolean formula
over these statements. Although we restrict ourselves to statements about discrete logarithms
(and representations), our method is a generalization of [12, 10], because it also includes the
possibility to prove relations among witnesses (e.g. discrete logarithms). For instance, using
the methods of [12, 10], a proof of equality of two discrete logarithms cannot be derived from
simple proofs of knowledge of discrete logarithms.

In Section 2 we briefly describe the discrete logarithm and the representation problem and
define some notations. In Section 3 we define proofs of knowledge informally and present some
examples of discrete logarithm-based proofs. In Section 4 the notation for specifying statements



about discrete logarithms is defined and explained. Then we show in Section 5 how, given such
a specification, an efficient proof system can be constructed (an example can be found in
Section 6). The paper is concluded in Section 7 with a discussion about possible improvements
and open problems.

2 Preliminaries

Let G be a finite cyclic group of prime order q and let g, g1,..., gk ∈ G be generators of G, for
some k > 0 (note that the primality of q is not a necessary condition but is here assumed for
simplicity). The discrete logarithm of an element y ∈ G to the base g is the unique integer
x, 0 ≤ x < q − 1, for which y = gx. The discrete logarithm is also called the index of y
with respect to the base g. An index tuple of y with respect to the bases g1,..., gk is a k-tuple
(x1,..., xk), with 0 ≤ xi < q − 1 for i = 1,..., k and

∏k
i=1 gxi

i = y. The index tuple (x1,..., xk) is
also called a representation of y with respect to g1,..., gk . See [1] for further discussions about
the representation problem.

Let us now define some notation that will be used throughout the paper. The concatenation
of the strings α and β is denoted by α‖β. The expression ξ ∈R X means that ξ is chosen
randomly from the (finite) set X according to the uniform distribution. Finally, let H : {0, 1}∗ →
{0, 1}`, denote a collision resistant hash function that maps the binary representation of the
argument to a binary string of length ` (e.g. ` = 128).

3 Proofs of Knowledge

Informally, a proof of knowledge allows a prover to convince (prove to) a verifier that he knows
a solution of a hard-to-solve problem, such that the following properties hold:

• an honest prover, knowing a solution, can successfully convince the verifier (completeness),

• with overwhelming probability, a cheating prover, not knowing any solution, will fail to
convince the verifier (soundness), and

• the verifier obtains no useful information about the solution the prover knows (there are
different definitions about what “obtaining no useful information” means, for instance
zero-knowledge, witness-hiding, and minimum-disclosure).

Proofs of knowledge have been introduced and defined formally in [13], but we will also call
systems proofs of knowledge if they do not meet the strong requirements of [13]. It has been
shown that proofs of knowledge exist for a large class of problems [14, 3]. However, efficient
proofs have been found only for some number-theoretic problems such as RSA-inversion and
computing discrete logarithms [15, 7, 6, 18].

Particularly, proofs of knowledge of discrete logarithms and of representations are important
ingredients of many cryptographic systems, from simple identification and signature schemes up
to complex electronic voting and digital payment systems. In the first example we will present
a simple proof of knowledge of a discrete logarithm.

Example 1. To prove the knowledge of the discrete logarithm of y = gx to the base g, the
prover computes the following values:

1. v ∈R Zq, t = gv
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2. c = H(g, y, t)

3. r = v − cx (mod q)

The values t, c, and r are called commitment, challenge, and response, respectively. The
resulting proof is the pair (c, r) and can be verified (by everyone) by first reconstructing the
commitment t′ = gryc and then checking the equation c

?= H(g, y, t′). This proof of knowledge
is basically a Schnorr signature [18] for the message (g, y).

Let us briefly discuss the properties of the proof system of Example 1. First, it can easily
be seen that an honest prover will always succeed in constructing a valid proof since

t′ = gryc = gv−cxyc = gv = t

and therefore c = H(g, y, t′). Second, assume that a cheating prover who does not know x was
able to compute such proofs. Since the hash function is hard to invert, we can assume that
the value t′ = gryc was fixed before c was computed. It also seems necessary that when fixing
the value t′ the prover was prepared to compute a proof for many other possible challenges
(otherwise the probability of success would be to small). But this means that the cheating
prover could also compute different representations of t′ to the bases g and y which implies the
knowledge of x, the discrete logarithm of y to the base g, and this contradicts the assumption
that the cheating prover does not know x. Note that a very similar idea, the so-called knowledge
extractor, is used in [13] for defining the soundness property of interactive proofs of knowledge.
Finally, under the assumption that H is a truly random function, it is possible to show that
extracting the discrete logarithm from such proofs is as hard as computing discrete logarithms.
If the protocol is executed interactively, i.e. the challenge is chosen by the verifier from a “small
set of possible challenges”, it can be proved to be zero-knowledge (which means that the verifier
could have simulated all the information obtained in the protocol).

Based on this proof of knowledge of a discrete logarithm, several other systems have been
proposed. One is a proof of the equality of two discrete logarithms (as used in [9] for a signature
scheme). More generally, one can prove that two discrete logarithms satisfy a linear equation.

Example 2. To prove that the discrete logarithms of y1 = gx1
1 and y2 = gx2

2 to the bases g1

and g2, respectively, satisfy the linear equation a1x1 + a2x2 = b (mod q), the prover proceeds
as follows:

1. (v1, v2) ∈R {(u1, u2) ∈ Z
2
q | a1u1 + a2u2 = 0 (mod q)}, t1 = gv1

1 and t2 = gv2
2

2. c = H(g1, y1, g2, y2, a1, a2, b, t1, t2)

3. r1 = v1 − cx1 (mod q) and r2 = v2 − cx2 (mod q)

The resulting proof is (c, r1, r2) and can be verified by first reconstructing the commitments

t′1 = gr1
1 yc

1 and t′2 = gr2
2 yc

2

and then checking the equations

c
?= H(g1, y1, g2, y2, a1, a2, b, t

′
1, t

′
2) and a1r1 + a2r2

?= −cb (mod q).

In other words, the prover convinces the verifier that he or she

• knows the discrete logarithms of y1 and y2 to the bases g1 and g2, respectively,
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• and that these logarithms satisfy the linear equation.

At a first glance, this looks like a new type of proof system, namely for proving properties
of knowledge. However, these types of proofs can easily be modeled using the concept of proofs
of knowledge.

The next example illustrates how different proofs can be combined. Given two problems
X and Y and corresponding systems for proving the knowledge of solutions, it is trivial to
construct a system for proving the knowledge of solutions to both X and Y (the two proof
systems are simply executed in parallel). Proving the knowledge of a solution of problem X
or of problem Y is more difficult because a verifier must not learn which solution the prover
knows. A very interesting method for solving this problem was first proposed by Cramer et al.
[10] and independently by De Santis et al. [12]. Let us demonstrate this method in Example 3.

Example 3. To prove the knowledge of the discrete logarithm of y1 = gx1 to the base g1 or
the discrete logarithm of y2 = gx2 to the base g2, the prover proceeds as follows (assume that
the prover knows x2):

1. choose v1, v2, and w ∈R Zq and compute t1 = yw
1 gv1

1 and t2 = gv2
2

2. c = H(g1, y1, g2, y2, t1, t2) (mod q)

3. c1 = w and c2 = c − c1 (mod q)

4. r1 = v1 (mod q) and r2 = v2 − c2x (mod q)

The resulting proof (c1, c2, r1, r2) can be verified by first reconstructing the commitments

t′1 = yc1
1 gr1

1 and t′2 = yc2
2 gr2

2

and by checking the equation

c1 + c2
?= H(g1, y1, g2, y2, t

′
1, t

′
2) (mod q).

The reason why this works is that the prover is “allowed to forge” one of the two proofs
since he can choose the corresponding challenge before the commitment is computed; the other
challenge is then determined by the hash function. The verifier, however, cannot decide which
challenge was chosen and therefore obtains no information about which discrete logarithms the
prover knows.

4 Knowledge Specification Sets

In the previous section we have presented the basic principles for proving knowledge about
discrete logarithms and representations. These basic proofs can now be combined in order to
prove the knowledge of solutions to more complex problems. We give a formal notation for
specifying the knowledge that a party wants to prove. From this specification an efficient proof-
system can be derived. Before describing this specification, we need to define the following
notations.

Definition 4.1. Concatenation of tuples:
Let a = (a1,..., ak) and b = (b1,..., b`) be k- and `-tuples, respectively. The concatenation of a
and b, denoted a ◦ b, is the tuple (a1,..., ak , b1,..., b`).
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Definition 4.2. Modified Cartesian Product:
Let A and B be sets of tuples. The modified Cartesian product of A and B, denoted A⊗B, is
the set of tuples

{a ◦ b | a ∈ A, b ∈ B}.

Using this notation we define a set of values (which are the witnesses of the underlying NP
language) and the proof of knowledge consists of proving the knowledge of at least one element
of this set. We call such a set a knowledge specification set and its definition the knowledge spec-
ification. As mentioned in the introduction, we restrict ourselves to sets specifying knowledge
about discrete logarithms and representations.

Definition 4.3. Knowledge specification set
Let G be a finite group of prime order q. Then a knowledge specification set for the group G
is defined as follows:

• for any group elements g and y, the set

DL(g, y) := {x ∈ Zq | y = gx}

is a knowledge specification set.

• for any k > 0 and group elements g1,..., gk , and y, the set

REP((g1,..., gk), y) := {(x1,..., xk) ∈ Z
k
q | y =

k∏
i=1

gxi
i }

is a knowledge specification set.

• for any k > 0 and values a1,..., ak, b ∈ Zq, the set

LE((a1,..., ak), b) := {(x1,..., xk) ∈ Z
k
q |

k∑
i=1

aixi = b (mod q)}

is a knowledge specification set.

• for knowledge specification sets A and B, the sets

A ⊗ B, A ∩ B, and A ∪ B

are also knowledge specification sets.

Remarks. The set DL(g, y) contains only one element and due to the discrete logarithm prob-
lem is it hard to compute this element for given y and g. The set REP((g1,..., gk), y) can contain
more than one element. However, it is hard to compute any other than the known representa-
tion if the bases are chosen in a random manner. Note that DL is just a special case of REP with
k = 1. Furthermore, proving the knowledge of an element of a set LE((a1,..., al), b) is trivial
because it is easy to compute a solution of the equation

∑k
i=1 aixi = b (mod q). Nevertheless,

such set make sense when combined with other statements using the ∩-operator in order to
express linear relations among several discrete logarithms or representations.
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Let us now briefly discuss a few examples of knowledge specification sets. First, proving
the knowledge of an element of the set DL(g, y) is equivalent to proving the knowledge of the
discrete logarithm of y to the base g, and a set REP((g1,..., gk), y) corresponds with a proof of
knowledge of a representation of y to the bases g1,..., gk.

Furthermore, the knowledge specification set of the proof in Example 2 can be defined as
given below. It shows how linear equations can be used in knowledge specifications.

K = (DL(g1, y1) ⊗ DL(g2, y2))︸ ︷︷ ︸
A

∩ LE((a1, a2), b).

The set A contains exactly one pair consisting of the discrete logarithms of y1 and y2 to the
bases g1 and g2, respectively. The intersection of A and LE((a1, a2), b) is non-empty if and
only if the two logarithms satisfy the linear equation. Therefore, by proving the knowledge of
an element of the set K, the prover indirectly proves that K is non-empty and thus the two
discrete logarithms have the desired property.

Using also the union of sets, one can specify also more general statements, for instance for
proving that two discrete logarithms are known and satisfy at least one of two linear equations:

A ∩ (LE((a1, a2), b) ∪ LE((d1, d2), e)).

Let us make a final remark about the intersection of knowledge specification sets. If one
intersects sets containing tuples of different cardinalities, such as

DL(g, y) ∩ LE((a1, a2), b),

it is obvious that the resulting set is empty and therefore no proof is possible. We will therefore
assume in the sequel that such expressions are eliminated in knowledge specifications.

5 Construction of Proof Systems

In this section we show how to construct a proof-system for proving the knowledge of an element
of an arbitrary knowledge specification set.

Transformation and Tree-Representation

Let F be a knowledge specification. By applying the transformations

I) (X ∪ Y ) ∩ Z → (X ∩ Z) ∪ (Y ∩ Z)

II) X ∩ (Y ∪ Z) → (X ∩ Y ) ∪ (X ∩ Z)

III) (X ∪ Y ) ⊗ Z → (X ⊗ Z) ∪ (Y ⊗ Z)

IV) X ⊗ (Y ∪ Z) → (X ⊗ Y ) ∪ (X ⊗ Z)

to F and to its subexpressions, we can find a representation of F of the form

F̃ =
m⋃

i=1

F̃i,

where the specifications F̃i contain no subexpressions of the form X ∪ Y . From now on we will
regard these F̃i as binary trees whose leaves are expressions of type REP, DL, or LE and whose
inner nodes are of type ∩ or ⊗ (see Figure 1 for an example). The nodes are labeled as follows:
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F̃1

∩�

��

1.0:

�
��

@
@@

1.01: LE((a1, a2, a3), b)⊗�

��

1.00:

�
��

@
@@

1.000: DL(h, z) 1.001: REP((g1, g2), y)

F̃2

∩�

��

2.0:

�
��

@
@@

2.01: LE((a1, a2, a3), b)2.00: ⊗�

��

�
��

@
@@

2.000: REP((g1, g2), y) 2.001: DL(h, z)

Figure 1: The set F =
((

DL(h, z) ⊗ REP((g1, g2), y)
) ∪ (

REP((g1, g2), y) ⊗ DL(h, z)
)) ∩

LE((a1, a2, a3), b) represented as a forest of two binary trees (see also Example 4 in the Ap-
pendix). The labels of the nodes are printed on the left side of each node.

• the root of tree F̃i is labeled i.0

• the left successor of a node labeled n is labeled n‖0
• the right successor of a node labeled n is labeled n‖1
Each node n in the tree F̃i is now assigned a pair (Vn, En), where Vn is a tuple of variables

and En is a set of equations over the finite field Fq in the variables in Vn and in special variables
wi. These pairs are recursively defined as follows:

• if n is a leaf of type DL(g, y) then

Vn = (vn,1) and En = ∅

• if n is a leaf of type REP((g1,..., gk), y) then

Vn = (vn,1,..., vn,k) and En = ∅

• if n is a leaf of type LE((a1,..., ak), b) in the tree F̃i then

Vn = (vn,1,..., vn,k) and En = {
k∑

j=1

ajvn,j = −wib}

Note that a single variable wi is used for all nodes of type LE in the tree F̃i.

• if n is an inner node of type ⊗ then

Vn = Vn‖0 ◦ Vn‖1 and En = En‖0 ∪ En‖1

• if n is an inner node of type ∩ then

Vn = Vn‖0 ◦ Vn‖1 and En = En‖0 ∪ En‖1 ∪
k⋃

j=1

{Vn‖0(j) = Vn‖1(j)}
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In the last equation Vn‖...(j) denotes the j-th variable in the tuple Vn‖.... Finally, let

V =V1.0 ◦... ◦ Vm.0, W =(w1,..., wm), and E=
m⋃

i=1

Ei.0.

V and W are tuples of variables, and E is a system of linear equations (modulo q) in the
variables in V and in W . In the sequel we will use the notation E|W=(...), meaning that in E
the variables of W are replaced by the corresponding values.

Constructing a proof for F

The (honest) prover knows an element K ∈ F which must be contained in at least one of the
sets F̃i. Therefore there exists an index α ∈ {1,...,m} such that K ∈ F̃α. Note that K is a
tuple of elements of Zq. The proof of knowledge is then constructed as follows:

1. Commitments

(a) compute W̄ = (w̄1,..., w̄m) with w̄α = 0 and w̄i ∈R Zq for i 6= α

(b) assign to V̄ = (v̄1.0...,1,..., v̄m.0...,.) a random tuple satisfying E|W=W̄

(c) assign to each node n in the forest F̃ a commitment Tn in the following way:

• if n is a leaf of type DL(g, y) in the tree F̃i then

Tn = (yw̄igv̄n)

• if n is a leaf of type REP((g1,..., gk), y) in the tree F̃i then

Tn = (yw̄i

k∏
j=1

g
v̄n,j

j )

• if n is a leaf of type LE((a1,..., ak), b) then Tn is the empty tuple ()
• if n is an inner node of type ⊗ or ∩ then

Tn = Tn‖0 ◦ Tn‖1

The commitment T is then computed as

T = T1.0 ◦... ◦ Tm.0

2. Challenge

The challenge C = (c1,..., cm) is computed as follows

ci =

{
H(F̃ , T ) − ∑m

j=1 w̄j (mod q) for i = α

w̄i otherwise

3. Response

Given K ∈ F̃α the prover can construct a tuple X satisfying the following conditions (the
components of X are labeled in the same way as the components of V ):
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• xn,j = 0 for all indices j if the leave n is notin the tree F̃α

• if n is a leaf of the type DL or REP in F̃α then the sub-tuple (xn,1,..., xn,k) is an
element of the set defined by the type of the leaf.

• Xα.0 satisfies the equations Eα.0|wα=−1 (where Xα.0 is the sub-tuple of X correspond-
ing to the sub-tuple Vα.0 of V )

The response R = (r1.0...,1,..., rm.0...,.) is then defined by

rn,j = v̄n,j − cαxn,j (mod q)

for all leaves n and all indices j.

The proof of knowledge is the pair (C,R).

Verifying a proof

The verification of a proof (C,R) consists of the following two steps:

1. Reconstructing the commitment by assigning to each node n in the forest F̃ a tuple
T ′

n in the following way:

• if n is a leaf of type DL(g, y) in the tree F̃i then

T ′
n = (ycigrn)

• if n is a leaf of type REP((g1,..., gk), y) in the tree F̃i then

T ′
n = (yci

k∏
j=1

g
rn,j

j )

• if n is a leaf of type LE((a1,..., ak), b) then T ′
n is the empty tuple ()

• if n is an inner node of type ⊗ or ∩ then

T ′
n = T ′

n‖0 ◦ T ′
n‖1

The reconstructed commitment T ′ is then

T ′ = T ′
1.0 ◦... ◦ T ′

m.0 .

2. Verifying the challenge and the response by

• verifying that H(F̃ , T ′) =
∑m

i=1 ci (mod q) and by

• verifying that R satisfies E|W=C
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6 Example

The following example should clarify the method presented in Section 5.

Example 4. Assume that the prover knows x1, x2, and x3 such that

z = hx1 , y = gx2
1 gx3

2 , and b = a1x1 + a2x2 + a3x3 (mod q)

and wants to prove the knowledge of the discrete logarithm of z to the base h and the rep-
resentation of y to the bases g1 and g2. Furthermore, he or she wants to prove that either
b = a1x1 + a2x2 + a3x3 (mod q) or b = a1x2 + a2x3 + a3x1 (mod q) holds (without giving
further information on x1, x2, and x3, of course).

The knowledge specification for this proof is

F =
((

DL(h, z) ⊗ REP((g1, g2), y)
) ∪ (

REP((g1, g2), y) ⊗ DL(h, z)
)) ∩ LE((a1, a2, a3), b);

In order to construct the proof system this specification must first be transformed into the
tree-representation which is achieved by applying transformation III once:

F̃ =
((

DL(h, z) ⊗ REP((g1, g2), y)
) ∩ LE((a1, a2, a3), b)

)
∪((

REP((g1, g2), y) ⊗ DL(h, z)
) ∩ LE((a1, a2, a3), b)

)
.

This formula is depicted in Figure 1.
Next the prover has to built the lists of variables and the set of equations for each node.

Here we do this only for the tree F̃1, the lists and sets for the tree F̃2 look similar.

node 1.000: V1.000 = (v1.000,1)
E1.000 = ∅

node 1.001: V1.001 = (v1.001,1, v1.001,2)
E1.001 = ∅

node 1.00: V1.00 = V1.000 ◦ V1.001 = (v1.000,1, v1.001,1, v1.001,2)
E1.00 = E1.000 ∪ E1.001 = ∅

node 1.01: V1.01 = (v1.01,1, v1.01,2, v1.01,2)
E1.01 = {a1v1.01,1 + a2v1.01,2 + a3v1.01,2 = −w1b}

node 1.0: V1.0 = (v1.000,1, v1.001,1, v1.001,2, v1.01,1, v1.01,2, v1.01,2)
E1.0 = {v1.01,1 = v1.000,1, v1.01,2 = v1.001,1, v1.01,2 = v1.001,2,

a1v1.01,1 + a2v1.01,2 + a3v1.01,2 = −w1b}
Finally the sets E1.0 and E2.0 are merged and the prover obtains E which is the set of the

following equations over Zq:

E = { v1.01,1 = v1.000,1, v1.01,2 = v1.001,1, v1.01,2 = v1.001,2, a1v1.01,1 + a2v1.01,2 + a3v1.01,2 = −w1b,
v2.01,1 = v2.000,1, v2.01,2 = v2.000,2, v2.01,2 = v2.001,1, a1v2.01,1 + a2v2.01,2 + a3v2.01,2 = −w2b}

and after also assigning V = V1.0 ◦ V2.0, and W = (w1, w2) the prover is able to construct the
proof. He chooses W̄ = (w̄1, w̄2) as (0, w) for some w ∈R Zq and a random tuple V̄ ∈R Z

12
q

satisfying the equations E|W=W̄ . This can be achieved by randomly choosing v̄1,..., v̄6 in Zq

such that the equations

a1v̄1 + a2v̄2 + a3v̄3 = 0 (mod q)
a1v̄4 + a2v̄5 + a3v̄6 = −wb (mod q)
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hold and then setting

V = (v̄1, v̄2, v̄3, v̄1, v̄2, v̄3, v̄4, v̄5, v̄6, v̄4, v̄5, v̄6).

The commitments for the nodes can now be computed:

T1.000 = (hv̄1) T2.000 = (zwhv̄1)
T1.001 = (gv̄2

1 gv̄3
2 ) T2.001 = (ywgv̄2

1 gv̄3
2 )

T1.00 = (hv̄1 , gv̄2
1 gv̄3

2 ) T2.00 = (zwhv̄1 , ywgv̄2
1 gv̄3

2 )
T1.01 = () T2.01 = ()
T1.0 = (hv̄1 , gv̄2

1 gv̄3
2 ) T2.0 = (zwhv̄1 , ywgv̄2

1 gv̄3
2 )

Using T = T1.0 ◦ T2.0 the prover can compute the challenge

C = (c1, c2) = (H(F̃ , T ) − w (mod q), w).

To calculate the response R the prover builds the list X = (x1, x2, x3, x1, x2, x3, 0, 0, 0, 0, 0, 0)
(note that α = 1) and computes the components ri.j,` of R as (all equations are modulo q,
components listed in the right order)

node 1.000 : r1.000,1 = v̄1 − c1x1 node 2.000 : r2.000,1 = v̄4,
node 1.001 : r1.001,1 = v̄2 − c1x2, r2.000,2 = v̄5

r1.001,2 = v̄3 − c1x3 node 2.001 : r2.001,1 = v̄6

node 1.01 : r1.01,1 = v̄1 − c1x1, node 2.01 : r2.01,1 = v̄4,
r2.01,2 = v̄2 − c1x2, r2.01,2 = v̄5,
r2.01,3 = v̄3 − c1x3 r2.01,3 = v̄6

The resulting proof is the pair (C,R).
Let us now see how a verifier proceeds to check the validity of the proof. As the first step

the verifier must reconstruct the commitment by assigning to each node in F̃1 and F̃2 a tuple
T ′

n:

T ′
1.000 = (zc1hr1.000,1) T ′

2.000 = (yc2g
r2.000,1

1 g
r2.000,2

2 )
T ′

1.001 = (yc1g
r1.001,1

1 g
r1.001,2

2 ) T ′
2.001 = (zc2hr2.001,1)

T ′
1.00 = (zc1hr1.000,1 , yc1g

r1.001,1

1 g
r1.001,2

2 ) T ′
2.00 = (yc2g

r2.000,1

1 g
r2.000,2

2 , zc2hr2.001,1)
T ′

1.01 = () T ′
2.01 = ()

T ′
1.0 = (zc1hr1.000,1 , yc1g

r1.001,1

1 g
r1.001,2

2 ) T ′
2.0 = (yc2g

r2.000,1

1 g
r2.000,2

2 , zc2hr2.001,1)

and gets T ′ = T ′
1.0 ◦ T ′

2.0. Then the verifier checks the challenge and the equations of E|W=C

(again, all equations are modulo q):

H(F̃ , T ′) = c1 + c2 r1.000,1 = r1.01,1 r2.000,1 = r2.01,1

a1r1.01,1 + a2r1.01,2 + a3r1.01,3 = −c1b r1.001,1 = r1.01,2 r2.000,2 = r2.01,2

a1r2.01,1 + a2r2.01,2 + a3r2.01,3 = −c2b r1.001,2 = r1.01,3 r2.001,1 = r2.01,3

It can easily be seen that these equations hold if the proof is constructed as described above.

7 Extensions and open problems

In this report we have shown how to construct complex proofs of knowledge. In order to keep the
notation and the method for deriving proofs as simple as possible, several possible extensions
and optimizations have been omitted. .
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Some of these extensions and improvements are quite obvious. For instance, instead of
returning the whole tuple R which must satisfy the equations in E|W=C , the prover can send
only as many components of R as are sufficient to compute the other components using the linear
equations in E|W=C . In Example 4 it suffices to return the values r1.01,1, r1.01,1, r2.01,1, and
r2.01,1; all other eight components of R can then easily be computed from the linear equations.

Another simple extension is to combine proofs of knowledge of discrete logarithms in different
groups, or even combinations of proofs about different problems. However, one should be careful
not to intersect sets of different types since this could result in misinterpretations of the proofs.

Finally, using techniques from [17, 16], proofs can also be blindly issued, meaning that the
prover helps a recipient to obtain a valid proof of knowledge without obtaining information
about it. An important application of such “blindly issued” proofs are anonymity protecting
digital payment systems (e.g. see [1, 2, 5]).

An interesting open problem is the design of efficient proofs of knowledge combined with
non-linear equations, such as a proof that one discrete logarithm equals the third power of
another discrete logarithm (there are a few non-linear relations that can be efficiently proved,
such as proving that one discrete logarithm is the square or the inverse of another one, but it
seems difficult to generalize these methods).
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