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Abstract. We propose a new construction for computationally secure
secret sharing schemes with general access structures where all shares
are as short as the secret. Our scheme provides the capability to share
multiple secrets and to dynamically add participants on-line, without
having to re-distribute new shares secretly to the current participants.
These capabilities are gained by storing additional authentic (but not
secret) information at a publicly accessible location.

1 Introduction

Secret sharing is an important and widely studied tool in cryptography and
distributed computation. Informally, a secret sharing scheme is a protocol in
which a dealer distributes a secret among a set of participants such that only
speci�c subsets of them, de�ned by the access structure, can recover the secret
at a later time.

Secret sharing has largely been investigated in the information-theoretic se-
curity model, requiring that the participants' shares give no information on the
secret, i.e. that the respective probability distributions are independent. Called
perfect secret sharing schemes, they require that for every participant the num-
ber of bits needed to represent a share must be at least as large as the number
of bits required to describe the secret itself (analogous to Shannon's theorem
about key size for a perfectly secure cipher).

If the access structure allows any subset of k or more of the n participants
to reconstruct the secret but not k � 1 or less, the secret sharing scheme is
called a threshold scheme. It can be implemented with Shamir's construction [14]
based on polynomial interpolation. Secret sharing schemes for general monotone
access structures are known, based on monotone circuit constructions [1, 9]. The
surveys by Stinson [16] and Simmons [15] provide a general description of secret
sharing schemes.

For many access structures it can be proved that some shares have to be
considerably larger than the secret in perfect schemes [5]. Moreover, there exist
families of special access structures on n participants where the size of some
shares must grow unboundedly as n!1 [6].

In the schemes described so far, the set of participants remains unchanged
until the secret is recovered. Blakley et al. [2] study threshold schemes with
disenrollment capabilities, where a participant is free to leave and to give away



his share. The dealer then shares a new secret by broadcasting a message over a
public channel. For perfect threshold schemes with m-fold disenrollment it can
be shown that the size of the initially distributed shares must grow linearly in
m [2]. These results are extended to general dynamic access structures by Blundo
et al. [3]. Schemes for distributing multiple secrets are examined in [4].

Recently, Krawczyk [10] introduced a construction for computationally secure
threshold secret sharing schemes where the shares can be shorter than the secret
and that uses a secure encryption function. Basically, this protocol works as fol-
lows: The (potentionally large) secret is encrypted with a symmetric encryption
function. The result is distributed among the participants using an information
dispersal protocol [13] based on error correcting codes. Any k out of the n par-
ticipants can reconstruct the encrypted secret. To prevent an unauthorized set
of participants from learning anything about the secret, the secret key used for
encryption is distributed among the participants using a conventional, uncondi-
tionally secure secret sharing scheme (e.g. Shamir's threshold scheme [14]).

Much research in the area of secret sharing has concentrated on the size
of the shares. Although the size of the shares is important because the shares
have to be transmitted and stored secretly, this is not the only information the
participants must know to reconstruct the secret. Additional knowledge needed
is, for example, the identity of the participants or the description of the protocol,
including the access structure. These parameters are publicly known, but at the
same time it is vital that they are authentic, i.e. no malicious participant has
changed these descriptions. This is particularly important if the participants
are computer systems that receive the descriptions over a potentially insecure
communications link.

We propose a novel computationally secure secret sharing scheme for gen-
eral access structures where all shares are as short as the secret. Our scheme
provides the capability to share multiple secrets and to dynamically add partici-
pants on-line, without having to re-distribute new shares secretly to the current
participants. These capabilities are traded for the need of storing additional au-
thentic (but not secret) information at a publicly accessible location, e.g. on a
bulletin board. Alternatively, this information can be broadcast to the partici-
pants over a public channel. The protocol gains its security from any one-way
function. In particular, our construction has the following properties:

{ All shares that must be transmitted and stored secretly once for every par-
ticipant are as short as the secret.

{ Multiple secrets can be shared with di�erent access structures requiring only
one share per participant for all secrets. This includes the ability for the
dealer to change the secret after the shares have been distributed.

{ The dealer can distribute the shares on-line:When a new participant is added
and the access structure is changed, already distributed shares remain valid.
Apart from the new participant's share that is secretly transmitted to him,
only publicly readable information has to be changed.

The scheme is secure given any secure one-way function in the sense that
a non-quali�ed set of participants running a polynomial-time algorithm cannot
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determine the secret with non-negligible probability. To prevent an attack by
exhaustive search, however, the set of possible secrets must not be too small.
Our construction solves an open problem of [10], albeit in a somewhat di�erent
way than proposed there.

Compared to traditional, unconditionally secure secret sharing schemes the
proposed method is very 
exible and uses only small shares. The di�erences lie
in the additional use of publicly accessible information and in the security model.
As for the use of authentic storage, we note that public information is needed in
all traditional secret sharing schemes and that, authenticity usually costs much
less than secrecy to implement.

Regarding the security model, computational security is theoretically weaker
than information-theoretic or perfect security. On the other hand, for many ap-
plications that use a perfectly secure protocol, the cost of generating the needed
random bits is prohibitively high and the bits are generated by a computation-
ally secure pseudo random number generator. This makes the perfectly secure
protocol vulnerable to adversaries with unlimited computing power.

The proposed scheme has many practical applications in situations where
the participants and the access rules or the secret itself frequently change. No
new shares have to be distributed secretly when new participants are included or
participants leave. Such situations often arise in key management, escrowed [7]
and fair [12] encryption systems, to name a few.

Consider, e.g., a high security area in a laboratory or in a bank where em-
ployees and managers are not permitted during o�-hours. Only groups of one
manager and at least two employees may enter and a secret sharing scheme is
used to share the access code. If, for example, a manager is �red, he will disclose
his share. With our scheme, only the access code and the bulletin board have
to be updated|the other managers and employees do not have to be given new
shares.

Another example is a group of frequently changing participants and alter-
nating size where always two thirds of the current group members are needed to
invoke some action, for example to reconstruct a master key used for escrowing
keys of malicious users.

The paper is organized as follows: The basic scheme is presented in Section 3
and extended for sharing multiple secrets in Section 4. On-line secret sharing is
then described in Section 5.

2 Preliminaries

We �rst need to formalize some aspects of a secret sharing scheme. A secret
sharing scheme is a protocol between a set of participants P = fP1; : : : ; Png
and a dealer D, where D 62 P is assumed. The access structure � � 2P is a
family of subsets of fP1; : : : ; Png containing the sets of participants quali�ed to
recover the secret. It is natural to require � to be monotone, that is, if X 2 �

and X � X0 � P, then X0 2 � . A minimal quali�ed subset Y 2 � is a set of
participants such that Y 0 62 � for all Y 0 � Y; Y 0 6= Y . The basis of � , denoted
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by �0, is the family of all minimal quali�ed subsets. Note that �0 uniquely
determines � and vice versa.

For simplicity, we assume that the secret K is an element of a �nite Abelian
group G =< G;+ > with l = log2 jGj. G could be the set of l-bit strings under
bitwise addition modulo 2.

A computationally secure secret sharing scheme [10] is a protocol between D
and the members of P to share a secret K, respective to an access structure �
such that

a) the dealer D transmits a share Si secretly to participant Pi, for i = 1; : : : ; n,

b) all quali�ed sets of participants X 2 � can e�ciently compute K from their
set of shares fSijPi 2 Xg, and

c) every unquali�ed subset of participants X 62 � running any polynomial-time
algorithm cannot determine K with non-negligible probability.

To make the de�nition of security rigorous, we have to resort to asymptotics
and consider the family of probability distributions of K indexed by the length
l of the secret. Under this de�nition, for any unquali�ed subset X 62 � running
any algorithm A to recover K in time polynomial in l, the output of A must be
equal to the correct K only with probability less than l�c, for all constants c
and suitably chosen l > lc.

We will make use of a one-way function on G, f : G! G such that f(x) is
easy to compute for all x 2 G (i.e. can be computed in time polynomial in l) and
that it is computationally infeasible, for a given y 2 G, to �nd an x 2 G such
that f(x) = y. The notion can be made rigorous analogous to the de�nition of
security.

To achieve reasonable security, the security parameter l and thus the set of
possible secrets have to be chosen large enough. Today, many secure one-way
functions exist with typical l ranging from 64 to 128.

3 The Basic Scheme

Our protocol uses a publicly accessible location where the dealer can put up
non-forgeable information that can be accessed by all the participants. We will
refer to this location as the bulletin board. Alternatively, if communication and
storage were not too expensive, the dealer could broadcast the information to
the participants instead of storing it centrally. Implicitly, such a bulletin board
is present in all existing secret sharing schemes and contains at least the number
of participants n and the access structure � .

The basic protocol to share a secret K 2 G works as follows:

1. The dealer randomly chooses n Elements S1; : : : ; Sn from G according to the
uniform distribution.

2. For all i = 1; : : : ; n, the dealer transmits Si over a secret channel to Pi.
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3. For each minimal quali�ed subset X 2 �0, the dealer computes

TX = K � f(
X

x:Px2X

Sx)

and publishes T = fTX jX 2 �0g on the bulletin board.

Addition and subtraction are performed inG. To recover the secret K, a quali�ed
set of participants Y proceeds similarly:

1. The members of Y agree on a minimal quali�ed subset X � Y .
2. The members of X add their shares together to get VX =

P
x:Px2X

Sx and
apply the one-way function f to the result VX .

3. They fetch TX from the bulletin board and compute K = TX + f(VX ).

One can easily verify the completeness of the protocol: every quali�ed subset
X 2 � can recover K.

Analyzing the security is only slightly more complicated: The relation be-
tween K and the shares is given by the j�0j equations

K = TX + f(VX )

for all X 2 �0, where the VX =
P

x:Px2X
Sx are all computed from di�erent

sets of shares. In the following, we denote by VX the sum
P

x:Px2X
Sx for any

set of participants X. An unquali�ed subset U 62 � cannot compute any of the
VX ; X 2 �0 directly. So the members of U cannot compute K by exploiting one
equation alone. However, they can link several equations through K or through
any VX . Linking two equations via K, one obtains relations of the form

TY � TZ = f(VY )� f(VZ)

with Y; Z 2 �0, of which the right sides are unknown to the members of U .
Except for the unlikely case that VY = VZ which can be recognized on the
bulletin board from TY = TZ , this if of no use to them.

Linking two equations via VW withW\U = ; andW[U 0 2 �0,W[U 00 2 �0,
for U 0 � U , U 00 � U , and U 0 6= U 00 yields

f�1(K � TW[U 0 ) � f�1(K � TW[U 00 ) = VU 0 � VU 00 ;

thus nothing what the members of U could not have computed by themselves.
The size of T deserves some consideration. In general, T and the bulletin

board are of size O(2n). However, note that for almost all general � the descrip-
tion of � itself is of the same size. This does not apply to threshold schemes
that can be described by a list of participants plus two parameters (t; n) and for
which T contains

�
n

t

�
elements. But threshold schemes may be more important

in theory than in practice: Re
ecting on the way large companies and organi-
zations are structured hierarchically today, it seems unlikely that a threshold
scheme with more than several thousands of members will be realized by them.

In case the size of the bulletin board is limited, the authenticity of T can also
be guaranteed by a digital signature of T by the dealer. If T is large, then parts
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of it could be signed such that not the entire table has to be read to validate a
single entry.

Only one member of T has to be accessed to recover the secret. Therefore,
the bulletin board could be implemented dynamically as a sever that broadcasts
the desired entry upon request, together with a signature.

The shares of the participants in X are the inputs to a computation that
ultimately yields K. For the basic scheme where one secret is shared once, the
shares do not have to be kept secret during this computation. However, in the
next two sections where additional capabilities of the scheme will be introduced,
the shares and the result of their addition have to be kept secret. We will then
assume that the participants can compute f(VX ) without revealing their shares.

The protocol also allows the dealer to change the secret after the shares have
been distributed by modifying T on the bulletin board.

4 Sharing Multiple Secrets

To share multiple secrets K1;K2; : : : with di�erent access structures � 1; � 2; : : :

among the same set of participants P, the dealer distributes the shares Si only
once but prepares T 1; T 2; : : : for each secret. However, straightforward repetition
of the basic scheme is not secure. Consider a set of participants X quali�ed to
recover both K1 and K2: Any group Y 2 � 1 can obtain K2 as

K2 = T 2
X + T 1

Y + f(VY )� T 1
X ;

because K1 = T 1
X
+ f(VX ) = T 1

Y
+f(VY ) and because f(VX ) is the same for K1

and K2. So Kh � T h
X
must not be the same for di�erent secrets.

To remedy this de�ciency we replace f by a family F = ffhg of one-way
functions so that di�erent one-way functions are employed for di�erent secrets.
The following protocol is used to share m secrets Kh with access structures � h

for h = 1; : : : ;m:

1. The dealer randomly chooses n Elements S1; : : : ; Sn from G according to the
uniform distribution.

2. For all i = 1; : : : ; n, the dealer transmits Si over a secret channel to Pi.
3. For each secret Kh to share (with h = 1; : : : ;m) and for each minimal

quali�ed subset X 2 � h0 , the dealer computes

T hX = Kh � fh(
X

x:Px2X

Sx)

and publishes T h = fT h
X
jX 2 � h0 g on the bulletin board.

To recover some secret Kh, a set of participants Y 2 � h proceeds similarly:

1. The members of Y agree on a minimal quali�ed subset X � Y .
2. The members of X compute VX =

P
x:Px2X

Sx and apply fh to VX .

3. They fetch T h
X
from the bulletin board and compute Kh = T h

X
+ fh(VX).
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The scheme does not demand a particular order for the reconstruction of the
secrets. The required family F of one-functions can easily be obtained from f

by setting fh(x) = f(h + x) when h is represented suitably in G.
Because a di�erent one-way function fh is used for each secret Kh, the in-

formation T h on the bulletin board corresponding to Kh is (computationally)
independent of the other T h

0

and Kh
0

for h 6= h0. Thus, the security of the
protocol is the same as for the basic protocol.

As noted above, the shares have to be protected from the eyes of other
participants during the reconstruction phase. Otherwise, these participants could
subsequently recover other secrets they are not allowed to know. We assume
therefore that the computation of fh(VX ) is performed without revealing the set
of inputs fSijPi 2 Xg. Possible ways of achieving this include the presence of
a trusted device to perform the computation or the use of a distributed circuit
evaluation protocol [8].

The protocol does not impose any limitation on m except for jFj, the size of
the family of hash functions, such that any number of secrets can be distributed
via the bulletin board while the shares of the participants remain the same.

5 On-line Secret Sharing

In many situations, the participants of a secret sharing scheme do not remain
the same during the entire life-time of the secret. The access structure itself may
change, too, if it is adapted to the new constellation of participants. In analogy
to the monotonicity of the access structure we will assume that the changes to
the access structure are monotone, i.e. participants are only added and quali�ed
subsets remain quali�ed.

We de�ne a computationally secure on-line secret sharing scheme to be a
protocol between a dealerD and the members of a sequence of sets of participants
P(0);P(1); : : : with P(t) � P(t+ 1) for all t � 0 to share a secret K, respective
to a sequence of access structures � (0); � (1); : : : with � (t) � � (t + 1) for all
t � 0, such that

a) the shares Si for Pi 2 P(0) form a computationally secure secret sharing
scheme for K respective to � (0),

b) at time t > 0 the dealer D transmits a share Si secretly to every participant
Pi 2 P(t) n P(t � 1),

c) for all t � 0, every quali�ed set of participants X 2 � (t) can e�ciently
compute K from their set of shares fSijPi 2 Xg, and

d) for all t � 0, all unquali�ed subsets of participants X 62 � (t) running any po-
lynomial-time algorithm cannot determineK with non-negligible probability.

The basic scheme from Section 3 satis�es the above de�nition when the dealer
operates step-by-step, distributing the shares to the new participants and up-
dating the bulletin board accordingly for every step. In particular, at step t > 0,
D chooses a random Si for every Pi 2 P(t)nP(t�1) and publishes the TX with
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X 2 �0(t) and X 62 �0(t � 1). The previously issued shares are not invalidated
and no shares have to be retransmitted.

The protocol of Section 4 to share multiple secrets can be extended similarly
for on-line sharing of multiple secrets.

6 Extensions

The 
exibility and the simplicity of the protocols allow many extensions to han-
dle additional situations. We brie
y discuss removing participants as opposed to
adding them in on-line schemes and the secrecy of the shares during reconstruc-
tion in multi-secret schemes.

If a participant Pi is removed or disenrolled at time t, he will publish his share
Si, eventually enabling an unquali�ed set X 62 � (t0) to recover K if X [ Si 2
� (t0) for some t0 � t if such an X exists. But in contrast to traditional secret
sharing schemes, if a new secret is chosen to be shared, the dealer needs only
update the bulletin board and no information has to be transmitted secretly.
The same situation arises if the sequence of access structures is allowed to be
non-monotonic.

The proposed multi-secret sharing protocols are only secure if the members of
a quali�ed set X do not disclose their shares when a secret Kh is reconstructed.
Otherwise, some schemes for Kh

0

; h0 6= h could be compromised. If the shares
cannot be hidden to carry out this computation, the protocols can be modi�ed
as follows: Similar to Lamport's one-time user authentication scheme [11], Si
is replaced by f (N�h)(Si) for all i = 1; : : : ; n in the h-th scheme (N is a pre-
de�ned constant and f (h)(x) denotes h-fold repeated application of f to x).
The secrets Kh; h = 1; : : : ; n have to be recovered in increasing order. Thus,
after the reconstruction of Kh, only values f (N�h

0 )(Si) for h0 > h are needed
to reconstruct additional secrets, but these values cannot be computed from
f (N�h)(Si) if the one-way function is secure. The drawback is, apart from the
�xed order of reconstruction, that N has to be chosen in advance and poses an
upper limit on m, the number of secrets that can be distributed.
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