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Abstract

In the Perfectly Secure Message Transmission (PSMT) problem, a sender S and
a receiver R are part of a distributed network and connected through n node
disjoint paths, also called as wires, among which at most t wires are controlled
by a static, Byzantine adversary Astatic

t , having unbounded computing power.
S has a message m, which S intends to send to R. The challenge is to design
a protocol, such that at the end of the protocol, R should correctly output m
without any error (perfect reliability) and Astatic

t should not get any information
about m, what so ever, in information theoretic sense (perfect security). The
problem of Statistically Secure Message Transmission (SSMT) is same as PSMT,
except that R should correctly output m with very high probability. Sayeed et
al. [37] have given a PSMT protocol in an asynchronous network tolerating
Astatic

t , where S and R are connected by n = 2t + 1 wires. However, we show
that their protocol does not provide perfect security. We then prove that in an
asynchronous network, if all the n wires are directed from S to R, then any
PSMT protocol tolerating Astatic

t is possible iff n > 3t. Surprisingly, we also
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prove that even if all the n wires are bi-directional, then any PSMT protocol
in asynchronous network tolerating Astatic

t is possible iff n > 3t. This is quite
surprising because for synchronous networks, by the results of Dolev et al. [16],
if all the wires are unidirectional (directed from S to R), then PSMT tolerating
Astatic

t is possible iff n > 3t, where as if all the wires are bi-directional then
PSMT tolerating Astatic

t is possible iff n > 2t. This shows that asynchrony
of the network demands higher connectivity of the network for the existence of
PSMT protocols. Interestingly, we further show that n > 2t wires are necessary
and sufficient for the existence of any SSMT protocol in asynchronous network
tolerating Astatic

t , irrespective of whether the n wires are unidirectional from
S to R or the n wires are bi-directional. By the results of [18, 23], n > 2t
are necessary and sufficient for the existence of SSMT in synchronous networks,
irrespective of whether the n wires are unidirectional from S to R or the n wires
are bi-directional. This shows that asynchrony of the network does not demand
higher connectivity of the network for SSMT protocols.

Key words: Information Theoretic Security, Error Probability, Optimality,
Asynchronous Networks.

1. Introduction

Consider the following problem: there exists a sender S and a receiver R,
who are part of an unreliable, distributed network and connected through n
vertex disjoint paths/channels called wires. Moreover, they do not share any in-
formation beforehand. The distrust in the network is modeled by a centralized
entity called adversary. The adversary, denoted as Astatic

t , is a static adver-
sary, having unbounded computing power, who can corrupt t out of n wires in
Byzantine fashion 7. S has a message m, chosen from a finite field F, which he
wants to send to R. The goal is to design a protocol, such that at the end of
the protocol, R should correctly output m without any error. This problem is
called as perfectly reliable message transmission (PRMT). The problem of per-
fectly secure message transmission (PSMT) has an additional requirement that
at the of the protocol, the adversary should get no information about m.

In PRMT and PSMT, the protocols guarantee the delivery of the message
without any error. If a negligible error probability is allowed in the message
delivery, then we arrive at the notion of statistically reliable message transmis-
sion (SRMT) and statistically secure message transmission (SSMT) respectively.
The problem of SRMT [18] is same as PRMT, except that R should correctly
output m with probability at least 1− 2−Ω(·), where · is a given error parame-
ter. Similarly, the problem of SSMT [18] is same as SRMT, with an additional
requirement that the adversary should not get any information about m in
information theoretic sense.

7If a wire is Byzantine corrupted then the adversary has full control over the wire and
hence the adversary can force the wire to behave in any arbitrary manner.

2



PRMT, PSMT, SRMT and SSMT are fundamental problems in secure dis-
tributed computing. If S and R are directly connected by a secure link, as
assumed in many fault tolerant distributed computing protocols like secure mul-
tiparty computation (MPC) [8, 20, 36, 44, 3, 10, 21, 4, 5, 6], Byzantine agreement
(BA) [34, 15, 24, 11, 1, 31] verifiable secret sharing (VSS) [12, 16, 8, 19, 27], then
reliable and secure communication between S and R is trivial. However, it is
impractical to assume the existence of a direct link between every two nodes in
the network. In such a situation PRMT/PSMT/SRMT/SSMT protocols help
to simulate a virtual reliable/secure link between S and R. Thus using these
protocols, we can simulate a virtual complete network and then we can execute
the above fault tolerant distributed computing protocols.

1.1. Existing Literature

PRMT and PSMT problem was first introduced and studied by Dolev et
al. [16]. Assuming the underlying network to be undirected and synchronous,
Dolev et al. abstracted the underlying network and assumed that S and R are
connected by n bi-directional vertex disjoint paths, also called as wires, of which
at most t could be under the control of Astatic

t
8. In such a model, any protocol

is assumed to be executed in phases, where a phase is a send from S to R or
vice-versa. So in a single phase protocol, only S is allowed to communicate to
R, while in a multi phase protocol, both S and R are allowed to communicate
with each other along the n wires. Hence while in a single phase protocol, the
n wires can be viewed as unidirectional, directed from S to R, in a multi phase
protocol, they can be viewed as bi-directional. Dolev et al. have given the
necessary and sufficient condition on the connectivity requirement (number of
wires n) for the existence of single and multi phase PSMT protocols, as shown
in Table 1. More recent efforts using the same adversarial model for the problem
of PSMT include [38, 42, 2, 17, 30, 22].

SRMT and SSMT problem was introduced by Franklin et al. [18] and later
studied by [14, 23, 40, 32] in synchronous network. The necessary and sufficient
condition on the connectivity requirement (number of wires n) for the existence
of single and multi phase SSMT, tolerating Astatic

t is given in Table 1.

1.2. Our Motivation and Contribution

The existing results for PSMT and SSMT assumes the underlying network
to be synchronous. Thus, if S (R) sends some information along a wire, then
it is assumed that R (S) will get the information (possibly corrupted, if the
wire is under the control of the adversary) along the wire after a fixed inter-
val of time. However, this is a very strong assumption because the delay in
the arrival of a single message will affect the overall security of the protocol.
A typical large network like the Internet can be modeled more accurately by

8The approach of abstracting the network as a collection of n wires is justified using
Menger’s theorem [26] which states that a graph is c − (S,R)-connected iff S and R are
connected by at least c vertex disjoint paths.
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Table 1: Connectivity requirement for single and multi phase PSMT and SSMT protocols in
synchronous networks tolerating Astatic

t .

PSMT SSMT
number of phases number of wires (n) number of phases number of wires (n)

1 n ≥ 3t+ 1 [16] 1 n ≥ 2t+ 1 [14, 23]
≥ 2 n ≥ 2t+ 1 [16] ≥ 2 n ≥ 2t+ 1 [18]

asynchronous networks than synchronous networks. The inherent difficulty in
designing a protocol in asynchronous network comes from the fact that we can-
not distinguish between a slow sender and a corrupted sender. Thus a receiver
cannot wait to receive message along all the n wires, as waiting for all of them
may turn out to be endless. So the receiver has to start computation as soon as
he receives information along n− t wires. As a result of this, information along
t (potentially honest) wires may get neglected.

In the literature, very little attention has been paid to the study of PSMT
and SSMT protocols in asynchronous network due to its complexity. This mo-
tivates us to study PSMT and SSMT protocols in asynchronous networks. Our
contributions in this paper are as follows:

1. In [37], Sayeed et al. have given a PSMT protocol in asynchronous net-
work, tolerating Astatic

t in the presence of n = 2t+ 1 unidirectional wires
from S to R. However, we show that their protocol does not provide per-
fect security.

2. We show that if there are n unidirectional wires from S to R in an asyn-
chronous network, then there exists a PSMT protocol tolerating Astatic

t ,
iff n > 3t. Comparing this with first row of the Table 1, we find that asyn-
chrony of the network does not effect the possibility of PSMT protocol, if
all the n wires are unidirectional from S to R.

3. We show that if there are n bi-directional wires between S and R in
an asynchronous network, then there exists a PSMT protocol tolerating
Astatic

t , iff n > 3t. This is surprising because from second row of the Table
1, n > 2t bi-directional wires are necessary and sufficient for the existence
of PSMT protocol against Astatic

t in synchronous network. This shows
that if all the n wires are bi-directional, then asynchrony of the network
significantly affects the possibility of PSMT protocols.

4. We show that SSMT between S and R is possible in an asynchronous
network, tolerating Astatic

t iff n > 2t. Moreover, this is true, irrespective
of whether the n wires are unidirectional or the n wires are bi-directional.
Comparing this with the results in the Table 1, we find that irrespective
of whether the n wires are unidirectional or bi-directional, asynchrony of
the network does not affect the possibility of SSMT.

In [41], the authors have studied PSMT and SSMT problem in asynchronous
networks tolerating a generalized non-threshold adversary, specified by an ad-
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versary structure. Informally, an adversary structure specifies the collection
of potential corruptible sets of wires, where any one of the sets will be acti-
vated/corrupted during the protocol execution. Moreover, the size of each set
in the adversary structure need not be same and they can be different. So, essen-
tially the adversary can choose any one of the sets from the adversary structure
and can corrupt the wires in the set during protocol execution. It is easy to see
that Astatic

t is a special type of non-threshold adversary, where size of each set
in the adversary structure is at most t. In [41], the authors have given the nec-
essary and sufficient conditions for PSMT and SSMT in asynchronous networks
tolerating non-threshold adversary. However, though not explicitly stated in the
paper, their characterization for PSMT is true under the assumption that S is
honest, while their characterization for SSMT is true under the assumption that
S may be corrupted, where if S is corrupted, then he may not send anything
to R along some path. Note that while in synchronous model, S being honest
or dishonest does not make any sense, in asynchronous model this makes lots
of difference. This is because we cannot distinguish between a slow sender and
a corrupted sender. However, in this paper we derive all the necessary and suf-
ficient condition, assuming S to be honest. The protocols given in [41] against
non-threshold adversary are very complex. Though we can derive protocols for
tolerating Astatic

t from the protocols of [41] tolerating non-threshold adversary,
the resultant protocols will be very complex and inefficient. Instead, since we
work on threshold model (where the corruption capability of the adversary is
bounded by a threshold), our protocols are very elegant and efficient.

Asynchronous PSMT/SSMT is an important primitive for perfectly/statistically
secure multiparty computation over asynchronous incomplete networks. Thus,
our results can be used to transform the asynchronous secure computation pro-
tocols that run over a complete network [9, 7, 43, 35, 5, 29, 31, 28, 33] into ones
that can be executed over incomplete networks.

1.3. Organization of the Paper

In the next section, we discuss the network model and present the definitions.
In Section 3 we perform the security analysis of the APSMT protocol of [37]
and show that it does not provide perfect security. This is followed by the true
characterization of APSMT protocols in the presence of unidirectional channels
in Section 4. Section 5 provides characterization of APSMT protocols in the
presence of bidirectional channels. Characterization of ASSMT protocols in the
presence of unidirectional channels and bidirectional channels are presented in
Section 6 and Section 7 respectively. We conclude the paper in Section 8.

2. Model and Definitions

We consider a completely asynchronous network N , where S, R are two
special nodes in N . All the nodes in N are modeled as probabilistic interactive
Turing Machines, where randomization is achieved through random coins. The
corruption in the network is modeled by a centralized adversary Astatic

t , who
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has unbounded computing power and can actively control at most t nodes in the
network, excluding S and R in Byzantine fashion. Astatic

t actively corrupting
a node implies that it takes full control of the node and forces the node to
(mis)behave in an arbitrary manner 9. The adversary is centralized and static
who corrupts at most t nodes at the beginning of the execution of the protocol.
However, neither S nor R will know the identity of the nodes under the control
of the adversary. A node under the control of Astatic

t will remain under its
control throughout the protocol.

Following the approach of Dolev et al. [16], we abstract the network and
assume that S and R are connected by n vertex disjoint paths, called wires, of
which at most t could be actively controlled by Astatic

t in Byzantine fashion.
Moreover, we consider the following two extreme cases:

1. When all the n wires are directed from S to R, thus do not allowing any
interaction between S and R;

2. When all the n wires are bi-directional, thus allowing interaction between
S and R.

A wire which is not under the control of Astatic
t is called honest. To model the

asynchrony in the network, we assume that the adversary can schedule the mes-
sage delivery along every wire; i.e., he can determine the time delay of all the
messages along all the n wires. However, adversary can only schedule the mes-
sages sent along honest wires, without having any access to them. Moreover, the
message sent over an honest wire will be eventually delivered. If a wire is under
the control of Astatic

t , then Astatic
t may indefinitely block the communication

along the wire. So the receiver may have to wait indefinitely for the message(s)
along that wire. Hence the receiver can not distinguish between honest wires
which are slow (due to the malicious scheduling of messages by Astatic

t on these
wires) and corrupted wires which withhold/does not send information at all.

In our protocols, S and R does computation over a field F, where F is a
finite field of prime order. For PSMT protocols, the only restriction on F is that
∣F∣ > n. On the other hand, for SSMT protocol, F = GF (2·), where · is the
error parameter of the protocol. If some x ∈ F is sent through all the wires,
then it is said to be broadcasted. If x is broadcasted over at least 2t+ 1 wires,
then receiver will always correctly recover it. This is because out of the 2t + 1
wires, at least t+1 will be honest and will eventually deliver x. So the receiver
can wait for a value which is received identically over at least t + 1 wires. We
now define asynchronous perfectly secure message transmission (APSMT) and
asynchronous statistically secure message transmission (ASSMT).

Let the message to be transmitted securely be drawn from F and Γ denote the
underlying probability distribution on F. We define the View of a node Pj ∈ N ,
at any point of the execution of a protocol Π for secure message transmission,

9This subsumes fail-stop corruption, where a corrupted node does not respond at all. In
addition, it also subsumes passive corruption, where a corrupted node correctly follows the
protocol, but the adversary eavesdrop the computation and communication of the node.
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to be the information that Pj can get from its local input to the protocol (if
any), all the messages that Pj had earlier sent or received, the protocol code
executed by Pj and random coins of Pj . The View of Astatic

t at any point of the
execution of Π is defined as all the information that Astatic

t can get from the
Views of all the nodes corrupted by Astatic

t (i.e. all the information that these
nodes can commonly compute from their Views). For message m ∈ F, any t-
active threshold adversary characterized byAstatic

t and any protocol Π for secure

message transmission, let Γ̂(Astatic
t ,m,Π) denote the probability distribution on

the View of the adversary Astatic
t at the end of the execution of Π.

Definition 1 (APSMT). A protocol Π is said to facilitate asynchronous per-
fectly secure message transmission (APSMT) between S and R if for any mes-
sage m drawn from F and for every adversary Astatic

t , the following conditions
are satisfied:

1. Perfect Secrecy: Γ̂(Astatic
t ,m,Π) = Γ̂(Astatic

t ,m′,Π). That is, the two
distributions are identical irrespective of the message transmitted.

2. Perfect Reliability: R should receive m correctly, without any error.

3. Termination: R should eventually terminate the protocol.

Definition 2 (ASSMT). A protocol Π is said to facilitate asynchronous sta-
tistically secure message transmission (ASSMT) between S and R if a negligible
error probability of 2−Ω(·) can be tolerated with respect to the Perfect Reliability
condition of APSMT by Π, where · is the error parameter. That is, R should
correctly receive m with probability at least (1− 2−Ω(·)). The probability is over
the choice of m and the coin flips of all the nodes in N and Astatic

t .

3. Security Analysis of APSMT Protocol of [37]

In [37], the authors have given an APSMT protocol tolerating Astatic
t , where

S and R are connected by wires wi, for i = 1, . . . , n, directed from S to R, where
n = 2t+ 1. We briefly recall the protocol from [37] and show that the protocol
does not achieve perfect secrecy; i.e., Astatic

t can recover m. In the protocol,
message m belongs to the set Q = {1, 2, . . . ,mmax} of positive integers, such
that mmax > n. Let MAX = 2mmax + 1. S sends m by doing the following
computation and communication:

1. S randomly selects n values K1,K2, . . . ,Kn from the set Q and associates
Ki with wire wi. For each Ki, S forms a key carrying polynomial pi(x) of
degree t, where pi(0) = Ki and other coefficients of pi(x) are randomly
chosen from Q. S also forms a secret carrying polynomial M(x) of degree
n, where M(0) = m and the coefficient of xi is Ki.

2. Through wire wi, S sends to R the value pj(i), for j = 1, . . . , n. S also
broadcasts M(1) and M(MAX), where the values of M(x) are in N , the
infinite set of positive integers.
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We now show how Astatic
t can recover m from the values sent by S. In the

protocol, S broadcasts:

V1 = M(1) = m+K1 +K2 + . . .+Kn and

V2 = M(MAX) = m+K1 ∗MAX +K2 ∗MAX2 + . . .+Kn ∗MAXn

Note that V1 and V2 does not belong to Q. They belong to N , the infinite set
of positive integers; i.e., the protocol works with the exact values of V1, V2. How-
ever, m ∈ Q and is always less than MAX. Since, V1 and V2 are broadcasted,
Astatic

t will also know V1 and V2. Also MAX is a publicly known parameter. If
Astatic

t computes (V2 mod MAX), then he obtains m, because all other terms in
V2 are multiple of MAX, except m, which is less than MAX. Thus, protocol of
[37] does not provide perfect secrecy. In fact, there does not exist any APSMT
protocol tolerating Astatic

t with n = 2t+ 1 unidirectional wires from S to R. In
the sequel, we present the true characterization of APSMT protocol tolerating
Astatic

t , when all the n wires are unidirectional from S to R.

4. APSMT When All Wires are Unidirectional from S to R

In the last section, we saw that the APSMT protocol of [37] does not provide
perfect security. We now give the true characterization for APSMT protocols
tolerating Astatic

t , when all the n wires are unidirectional, directed from S to R.

Theorem 1. Suppose there exists n wires, directed from S to R, of which at
most t could be under the control of Astatic

t . Then there exists an APSMT
protocol only if n > 3t.

Proof: From [16], we know that n > 3t wires are necessary for the existence
of any synchronous PSMT protocol tolerating a t-active Byzantine adversary,
when all the wires are unidirectional from S to R. Hence it is obviously neces-
sary for the existence of APSMT protocol tolerating Astatic

t , if all the wires are
unidirectional from S to R. □

We now show that n > 3t unidirectional wires from S to R are also sufficient
for designing an APSMT protocol. Before that we briefly describe the properties
of Reed-Solomon codes [25], which are used in our protocol.

4.1. Reed-Solomon (RS) Codes

Let F be a finite field and ®1, ®2, . . . ®n be distinct elements of F. Given
k < n ≤ ∣F∣, and an arbitrary message block B = [m1 m2 . . . mk], the encoding
function for the Reed-Solomon code is defined as [pB(®1) pB(®2) . . . pB(®n)]

where pB(x) is the polynomial
∑k−1

i=0 mi+1x
i.

Let W = {(i1, a1), (i2, a2), . . . , (il, al)} be an input word which differs from
a valid RS codeword, say C, at most at r locations. Moreover, let C be the
RS codeword corresponding to a message block of size k+ 1. Then there exists
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efficient error correcting procedure, like Berlekamp-Welch algorithm [25], that
can correct r errors in W , provided that ∣W ∣ ≥ k+2r+1 [25]. We denote such
an error correcting procedure as RS − DEC(k, r,W ), which takes as input a
word W and tries to output a polynomial of degree k by correcting at most r
errors in W . We are now ready to present our APSMT protocol, which is given
in the next section.

4.2. APSMT Protocol in the Presence of n = 3t+ 1 Unidirectional Wires

Let S and R be connected by unidirectional wires wi, 1 ≤ i ≤ n, which are
directed from S to R, where n = 3t+ 1. We design an APSMT protocol called
ΠUnidirectional

APSMT , tolerating Astatic
t . The protocol is given in Fig. 1.

Figure 1: Protocol ΠUnidirectional
APSMT with n = 3t+ 1 unidirectional wires from S to R.

Computation and Communication by S:

1. S selects a random polynomial p(x) of degree t over F, such that p(0) =
m, where m is the secret message, which S wants to send to R.

2. For i = 1, . . . , n, S sends the tuple (i, p(i)) to R over wire wi.

Message Recovery by R:

For r = 0, . . . , t, R does the following in iteration r:

1. Let W denote the set of wires over which R has received the tuples and
Ir denote the tuples received over the wires in W, when W contains
2t+ 1 + r wires.

2. Wait until ∣W∣ ≥ 2t + 1 + r. R applies RS − DEC(t, r, Ir) to get the
polynomial p′(.). If no polynomial is output, then R skips the next step
and proceeds to next iteration.

3. If for at least 2t+ 1 elements (i, a) ∈ Ir, p
′(i) = a, then R outputs p′(0)

as the secret message and terminates. Otherwise, R proceeds to the next
iteration.

We now prove the properties of protocol ΠUnidirectional
APSMT .

Theorem 2. In protocol ΠUnidirectional
APSMT , the adversary Astatic

t gets no informa-
tion about the secret message m.

Proof: It is easy to see that Astatic
t gets at most t distinct points on p(x).

So Astatic
t lacks by one point to uniquely interpolate p(x). This implies that

p(0) = s is information theoretically secure. □

Theorem 3. In protocol ΠUnidirectional
APSMT , R will eventually output m.
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Proof: Suppose Astatic
t corrupts r̂ ≤ t wires during the transmission of values

of p(x). Now during r̂tℎ iteration, R receives 2t+1+ r̂ points on p(x), of which r̂
are corrupted. So from the properties of Reed-Solomon codes [25] (as described
in the previous section), polynomial p′(.) which is output by RS−DEC during
r̂tℎ iteration will pass through at least 2t+1 points in Ir. Since out of these 2t+1
points, at least t+1 are honest and uniquely define the original polynomial p(.)
(t+1 points uniquely define a t degree polynomial), the output polynomial p′(.)
is same as p(.). Thus p(.) will be output in r̂tℎ iteration and all the iterations
up to iteration r̂ will be unsuccessful, as either they will not output any t degree
polynomial or the output polynomial will not pass through 2t+ 1 points in Ir.
□

Theorem 4. Let there exists n unidirectional wires from S to R. Then APSMT
tolerating Astatic

t is possible iff n > 3t.

Proof: The proof follows from Theorem 1 and protocol ΠUnidirectional
APSMT . □

5. APSMT When All Wires are Bidirectional Between S and R

In this section, we characterize APSMT tolerating Astatic
t , when all the n

wires between S and R are bi-directional. In this setting, we show that APSMT
tolerating Astatic

t is possible iff there exists n > 3t bi-directional wires between
S and R. This shows that irrespective of whether the n wires between S and R
are uni-directional or bi-directional, n > 3t wires are necessary for the existence
of any APSMT protocol tolerating Astatic

t .

Theorem 5. Let S and R be connected by n = 3t + 1 bi-directional wires, of
which at most t are under the control of Astatic

t . Then there exists an APSMT
protocol tolerating Astatic

t .

Proof: Any bi-directional wire between S and R can be treated as an uni-
directional wire from S to R. Now we know that there exists an APSMT pro-
tocol ΠUnidirectional

APSMT tolerating Astatic
t if there exists n = 3t + 1 unidirectional

wires from S to R. Hence the same protocol can also be executed if there exists
n = 3t+ 1 bi-directional wires between S and R. □

We now show that if all the n wires between S and R are bi-directional,
then APSMT tolerating Astatic

t is possible only if n > 3t. The proof is by
contradiction. We first show that there does not exist any APSMT protocol
between a sender S′ and receiver R′, with three bi-directional wires between S′

and R′, of which one can be corrupted by the adversary (Theorem 6). Then
by using a standard player partitioning argument [24], we show that if there
exists an APSMT protocol tolerating Astatic

t with n = 3t bi-directional wires
between S and R, then there exists an APSMT protocol between S′ and R′

who are connected by three bi-directional wires, of which at most one could be
corrupted, which is a contradiction (Theorem 7).
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Theorem 6. Let there exists three bi-directional wires between a sender S′ and
a receiver R′, of which at most one wire could be under the control of the ad-
versary. Then there does not exist any APSMT protocol between S′ and R′.

Proof: The proof is by contradiction. Let S′ and R′ be connected by three bi-
directional wires w1, w2, w3, of which at most one wire can be under the control
of adversary Astatic

1 . Moreover, let there exists an APSMT protocol Π between
S′ and R′ tolerating Astatic

1 . Let E be an execution of Π. Then we define the
following variables:

1. time(E,R′, wi): denotes the arrival time of the different messages (with
respect to local clock) received by R′ along wire wi, i ∈ {1, 2, 3} in E.

2. time(E,S′, wi): denotes the arrival time of the different messages (with
respect to local clock) received by S′ along wire wi, i ∈ {1, 2, 3} in E.

3. Etime: denotes the total time taken (with respect to R′) by execution E;
i.e., the time at which R′ terminates by outputting the message in E.

From the termination property of APSMT, each execution of Π will eventu-
ally terminate. Moreover, in any execution of Π, the distribution of data sent
along a single wire will be same, irrespective of the secret message (which is sent
by Π). Otherwise, the adversary can passively listen the wire and will get in-
formation about the secret message, thus violating the perfect secrecy property
of Π. Now consider the following execution sequences of protocol Π:

1. E1: The random coin tosses of S′ and R′ are r1 and r2 respectively. S′

wants to send the secret m. The adversary strategy is to control wire w3

and not allowing any data to pass over w3 throughout E1. Let ® and ¯
denote the messages that are exchanged between S′ and R′, along w1 and
w2 respectively. The protocol terminates at time Etime

1 , outputting m.

2. E2: The random coin tosses of S′ and R′ are r1 and r2 respectively. S′

wants to send the secret message m. The adversary strategy is to passively
control w2 and delay any information along w3 for time Etime

1 +Etime
3 +1

(E3 is defined below). In addition, the adversary schedules the messages
along w1 and w2 in such a way that time(E2,S

′, wi) = time(E1,S
′, wi),

for i ∈ {1, 2} and time(E2,R
′, wi) = time(E1,R

′, wi), for i ∈ {1, 2}.
Thus the view of S′ and R′ in E1 and E2 are exactly same and hence the
secret m is reconstructed. Also Etime

1 = Etime
2 and ® and ¯ are exchanged

between S′ and R′, along w1 and w2 respectively.

Letm∗( ∕= m) be another secret message. Then from the perfect secrecy property
of Π, there exists r3( ∕= r1) and r4(∕= r2), such that the following holds: S′ wants
to send m∗, the random coin tosses of S′ and R′ are r3 and r4 respectively
and the information exchanged between S′ and R′ along wire w2 is ¯. Note
that such an r3, r4 exists, otherwise it implies that data sent along wire w2 is
dependent on secret message, thus violating perfect secrecy property of Π. Now
consider the following executions of Π:

3. E3: The random coin tosses of S′ and R′ are r3 and r4 respectively. S′

wants to send the secret message m∗. The adversary strategy is to control
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wire w3 and not allowing any data to pass over w3 throughout E3. Let ®
∗

and ¯∗(= ¯) denote the messages that are exchanged between S′ and R′,
along w1 and w2 respectively and the protocol terminates at time Etime

3 ,
outputting m∗.

4. E4: The random coin tosses of S′ andR′ are r3 and r4 respectively. S
′ wants

to send the secret message m∗. The adversary strategy is to passively
control w2 and delay any information along w3 for time Etime

1 +Etime
3 +1.

In addition, the adversary schedules the messages along w1 and w2 in
such a way that time(E4,S

′, wi) = time(E3,S
′, wi), for i ∈ {1, 2} and

time(E4,R
′, wi) = time(E3,R

′, wi), for i ∈ {1, 2}. Thus the view of S′

and R′ in E3 and E4 are same and hence the secret m∗ is reconstructed.
Also Etime

3 = Etime
4 and ®∗ and ¯∗(= ¯) are exchanged between S′ and

R′, along w1 and w2 respectively.

5. E5: The random coin tosses of S′ and R′ are r1 and r4 respectively. S′

wants to send the secret message m. Let ®′, ¯′(= ¯) denote the messages
that should have been exchanged between S′ and R′ along w1 and w2

in ideal situation, when w1 and w2 are honest (not under the control of
adversary).

Now the adversary strategy in E5 is as follows: adversary delay any in-
formation along w3 for time Etime

1 + Etime
3 + 1. In addition, the ad-

versary controls w1 in Byzantine fashion, such that instead of receiving
messages from ®′, R′ gets messages from ®∗, while S′ receives messages
from ®. Moreover, adversary schedules the messages along w1 and w2 in
such a way that time(E5,S

′, wi) = time(E2,S
′, wi), for i ∈ {1, 2} and

time(E5,R
′, wi) = time(E4,R

′, wi), for i ∈ {1, 2}. Thus the view of S′ is
® ¯′ = ® ¯, while view of R′ is ®∗ ¯′ = ®∗ ¯.

Thus the view of S′ in E2 and E5 are same, so S′ will assume that m has been
communicated securely. However, the view of R′ in E5 is same as in E4 and
hence R′ will output m∗. But this violates the perfect reliability property of Π,
which is a contradiction. Hence Π does not exist. □

Theorem 7. Let S and R be connected by n bi-directional wires, of which at
most t can be under the control of Astatic

t . Then there exits an APSMT protocol
tolerating Astatic

t only if n > 3t.

Proof: The proof is by contradiction. Assume that there exist an APSMT
protocol ΠAPSMT between S and R tolerating Astatic

t , where S and R are
connected by n = 3t bi-directional wires. Now by using standard player par-
titioning strategy, we show how to transform protocol ΠAPSMT into another
APSMT protocol Π between a sender S′ and a receiver R′, who are connected
by three bi-directional wires, of which at most one could be corrupted by the ad-
versary. Let the wires between S and R be numbered 1, 2, . . . , 3t. Similarly, let
the wires between S′ and R′ be numbered as 1, 2, 3. Now we define a mapping
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M : {1 . . . n} −→ {1, 2, 3} as follows:

M(x) = 1 : ∀x ∈ {1 . . . t}
= 2 : ∀x ∈ {t+ 1 . . . 2t}
= 3 : ∀x ∈ {2t+ 1 . . . 3t}

We denote M−1(1) = {1, 2, . . . , t}, M−1(2) = {t+1, t+2, . . . , 2t} and M−1(3) =
{2t+ 1, 2t+ 2, . . . , 3t}. Now Π is obtained from ΠAPSMT in the following way:
if in protocol ΠAPSMT , k ∈ F is sent from S to R on wire w ∈ {1, 2, . . . , 3t},
then in protocol Π, k is sent from S′ to R′ on wire M(w). We define the
transmission from R′ to S′ in a similar fashion. Similarly, if the adversary
controls wire w ∈ {1, 2, 3} in protocol Π, then he controls the set M−1(w) in
protocol ΠAPSMT . It can be easily verified that the view of S′ and R′ in Π
is same as the view of S and R respectively, in protocol ΠAPSMT . So Π is an
APSMT protocol between S′ and R′, who are connected by three bi-directional
wires, of which at most one can be corrupted. But from Theorem 6, Π does not
exist. Hence ΠAPSMT also does not exist. □

6. ASSMT When All Wires are Unidirectional from S to R

We now give the characterization for ASSMT protocols tolerating Astatic
t ,

when all the wires are directed from S to R.

Theorem 8. Let there exists n wires directed from S to R, of which at most
t could be under the control of Astatic

t . Then there exists an ASSMT protocol
tolerating Astatic

t , only if n > 2t.

Proof: From [14, 23], we know that n > 2t wires are necessary for the ex-
istence of any synchronous SSMT protocol tolerating an all powerful t-active
Byzantine adversary, when all the wires are unidirectional from S to R. Hence
it is obviously necessary for the existence of ASSMT protocol tolerating Astatic

t ,
if all the wires are unidirectional from S to R. □

We now show that n = 2t + 1 unidirectional wires from S to R are sufficient
to design an ASSMT protocol tolerating Astatic

t . Let S and R be connected by
n = 2t+1 unidirectional wires, directed from S to R. Let the wires be denoted
by w1, . . . , wn. Moreover, let F = GF (2·), where · is the error parameter.
Furthermore, without loss of generality, let n = poly(·). We now present an
ASSMT protocol called ΠUnidirectional

ASSMT , which securely sends a message m ∈ F.
Before describing the protocol, we present a well know tool, which is used in
existing PSMT protocols.

Definition 3 (Shamir Secret Sharing [39]). Let s ∈ F be a secret. Then
Shamir secret sharing allows to generate n shares of s, such that s can be recon-
structed from any t+1 shares while any set of t or less shares will not give any
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information about s. This can be done as follows: let p(x) be a random poly-
nomial of degree t over F, such that p(0) = s. Let si = p(i), for i = 1, . . . , n.
Then s1, . . . , sn are called the n shares of s.

It is easy to see that any t+ 1 distinct shares will uniquely reconstruct back
the secret s. This is because the t+1 shares are nothing but t+1 distinct points
on p(x), which is of degree t. So using Lagrange interpolation, p(x) and hence
p(0) = s can be uniquely reconstructed from t+ 1 shares. On the other hand, s
cannot be uniquely reconstructed from t or less shares.

We now present another well know tool, used in existing SSMT protocols.

Definition 4 (Information Theoretically Secure Authentication [36]).
Let a, b,M ∈ F, where M is the message and a, b are the authentication keys.
We define autℎ(M ; a, b) = aM + b. It is easy to see that given autℎ(M ; a, b)
and M , no information about a and b can be inferred if a and b are unknown.
Similarly, given autℎ(M ; a, b) and M , it is not possible to correctly generate
autℎ(M ′; a, b), for M ′ ∕= M , without knowing a and b, except with probability
1
∣F∣ ≈ 2−Ω(·).

Protocol ΠUnidirectional
ASSMT is now formally given in Fig. 2.

We now prove the properties of protocol ΠUnidirectional
ASSMT .

Claim 1. In protocol ΠUnidirectional
ASSMT , if R concludes that p′(i) is a valid share,

then except with probability 2−Ω(·), p′(i) = p(i).

Proof: The claim trivially holds without any error if wi is honest because an
honest wire will correctly deliver p′(i) = p(i). So we consider the case when wi

is corrupted. So let wi be a corrupted wire, who delivers p′(i) ∕= p(i). In order
that p′(i) is considered as a valid share, it must hold that Supporti ≥ t + 1.
This further implies that there exists at least one honest wire, say wj , such
that wj ∈ Supporti because there can be at most t corrupted parties. Since
wj ∈ Supporti, it implies that °′

ij = autℎ(p′(i); a′ij , b
′
ij). Now notice that wj

is an honest wire and so a′ij = aij and b′ij = bij . However Astatic
t will have no

information about a′ij and b′ij , as they are sent over wj . So from the properties

of autℎ, except with probability 2−Ω(·), °′
ij ∕= autℎ(p′(i); a′ij , b

′
ij), which is a

contradiction. So except with probability 2−Ω(·), p′(i) = p(i). □

Claim 2. In protocol ΠUnidirectional
ASSMT , R will eventually get t+ 1 valid shares.

Proof: In ΠUnidirectional
ASSMT , the worst case occurs when at most t corrupted wires

do not deliver any information at all. However, still there exists t + 1 honest
wires, who will eventually deliver correct shares to R. These correct shares will
eventually reach R and hence will be considered as valid shares by R. □

Claim 3. In protocol ΠUnidirectional
ASSMT , if R outputs m′, then except with proba-

bility 2−Ω(·), m′ = m.
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Figure 2: Protocol ΠUnidirectional
ASSMT with n = 2t+ 1 unidirectional wires from S to R.

Computation and Communication by S:

1. S selects a random polynomial p(x) of degree t over F, such that p(0) =
m, where m is the secret message, which S wants to send to R.

2. For i = 1, . . . , n, S computes p(i).

3. For i = 1, . . . , n, corresponding to p(i), S randomly selects n authentica-
tion keys (aij , bij) ∈ F2, for j = 1, . . . , n.

4. For i = 1, . . . , n, S computes °ij = autℎ(p(i); aij , bij), for j = 1, . . . , n.

5. For i = 1, . . . , n, S sends the following to R over wire wi:

(a) The value p(i);
(b) °ij , for j = 1, . . . , n;
(c) The authentication keys (aji, bji), for j = 1, . . . , n.

Message Recovery by R:

For r = 0, . . . , t, R does the following in iteration r:

1. Let W denote the set of wires wi over which R has received a complete
set of values; i.e.,

(a) The value p′(i);
(b) °′

ij , for j = 1, . . . , n;
(c) The authentication keys (a′ji, b

′
ji), for j = 1, . . . , n.

Let Wr denote the contents of W, when W contains exactly t + 1 + r
wires.

2. Wait until ∣W∣ ≥ t + 1 + r. Now corresponding to every wi ∈ Wr, R
computes

Supporti = {wj ∈ Wr : °′
ij = autℎ(p′(i); a′ij , b

′
ij)}

3. If Supporti ≥ t+ 1, then R concludes that p′(i) is a valid share.

4. If R finds t + 1 valid shares, then using them R interpolates the t de-
gree polynomial p′(x), output m′ = p′(0) and terminates the protocol.
Otherwise R proceeds to next iteration.
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Proof: If R outputs m′, then it implies that R must have received t+ 1 valid
shares, using which R has interpolated t degree polynomial p′(x), such that
p′(0) = m′. In the worst case, out of these t + 1 valid shares, at most t shares
could have been received over the wires which are under the control of Astatic

t .
However, from Claim 1, the probability that none of those t shares are the
original shares of m is at most t2−Ω(·) ≈ 2−Ω(k). So except with probability
2−Ω(k), all the t+1 valid shares are indeed the original shares of m. So m′ = m,
except with probability 2−Ω(·). □

Claim 4. In protocol ΠUnidirectional
ASSMT , Astatic

t will get no information about m.

Proof: Without loss of generality, let w1, . . . , wt be under the control of Astatic
t .

So Astatic
t will know p(1), . . . , p(t). Astatic

t will also know the authentication
keys (aji, bji), for j = 1, . . . , n and i = 1, . . . , t. But since the authentication
keys used to authenticate each share are completely random and independent
of each other, they do not provide any extra information to Astatic

t about p(t+
1), . . . , p(n). Thus adversary will lack by one point to uniquely interpolate p(x)
and so from the properties of Shamir secret sharing [39], p(0) = m will be
information theoretically secure. □

Theorem 9. If there are n = 2t + 1 unidirectional wires from S to R, then
there exists an efficient ASSMT protocol tolerating Astatic

t .

Proof: Follows from protocol ΠUnidirectional
ASSMT and Claim 1, Claim 2, Claim 3

and Claim 4. □

Theorem 10. Let S and R be connected by n unidirectional wires, directed
from S to R. Then ASSMT tolerating Astatic

t is possible iff n > 2t.

Proof: Follows from Theorem 8 and Theorem 9. □

7. ASSMT When All Wires are Bidirectional Between S to R

The characterization for ASSMT tolerating Astatic
t , when all the n wires

between S and R are bi-directional is given by following theorem:

Theorem 11. Let S and R be connected by n bi-directional wires, of which
at most t could be under the control of Astatic

t . Then there exists an ASSMT
protocol tolerating Astatic

t iff n > 2t.

Proof: Any bi-directional wire between S and R can be treated as an uni-
directional wire from S toR. Now we know that there exists an ASSMT protocol
ΠUnidirectional

ASSMT tolerating Astatic
t if there exists n = 2t + 1 unidirectional wires

from S to R. Hence the same protocol can also be executed if there exists
n = 2t+1 bi-directional wires between S to R. This proves the sufficiency part.

From [18], we know that n > 2t wires are necessary for the existence of
any synchronous SSMT protocol tolerating an all powerful t-active Byzantine
adversary, when all the wires are bi-directional. Hence it is obviously necessary
for the existence of ASSMT protocol tolerating Astatic

t , if all the wires between
S and R bi-directional. □

16



8. Conclusion and Open Problems

In this paper, we have studied PSMT and SSMT in asynchronous networks.
We showed that the existing PSMT protocol of [38] does not provide perfect
secrecy. We then give the exact characterization of PSMT in asynchronous
networks. We also give the necessary and sufficient condition for SSMT in
asynchronous networks. Our characterization reveals that asynchrony of the
network significantly affects the connectivity requirement for PSMT, where as
asynchrony does not play any role in determining the connectivity requirement
for SSMT.

In this paper we have considered two network settings: one, when all the
wires between S and R are directed from S to R and second, when all the wires
between S and R are bidirectional. It would be interesting to consider a more
general case, when certain wires are directed from S to R and certain wires
are directed from R to S. Finding the characterization of PSMT and SSMT
tolerating mixed adversary in asynchronous network is yet another interesting
problem.
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