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Abstract. The goals of this paper are to formalize and investigate the gener-
al concept of a digital signature scheme, based on a general one-way function
without trapdoor, for signing a predetermined number of messages. It gener-
alizes and unifies previous work of Lamport, Winternitz, Merkle, Even et al.
and Vaudenay. The structure of the computation yielding a public key from a
secret key corresponds to a directed acyclic graph G. A signature scheme for G
can be defined as an antichain in the poset of minimal verifyable sets of vertices
of G with the naturally defined computability relation as the order relation and
where a set is verifyable if and only if the public key can be computed from the
set. Several types of graphs are analyzed, results on the number of signatures
of these schemes are presented (with and without restriction on the size of
signatures), and several open research problems are proposed. In particular, a
tree is shown which allows to sign 0.4162 bits per one-way function evaluation
and it is proved that this is also an upper bound for all trees.

1. Introduction

Lamport [6] proposed a so-called one-time signature scheme based on a general one-
way function (OWF), i.e., a function f that is easy to compute but computationally
infeasible to invert, for suitable definitions of “easy” and “infeasible”.  Lamport’s
scheme for signing a single bit is set up by choosing as the secret key two strings xg
and 7 at random and revealing as the public key the pair (f(z¢), f(z1)). The signature
for bit b is . For signing longer messages, several instances of this scheme can be
used.

Motivated by Lamport’s approach, many researchers have subsequently proposed
more efficient one-time signature schemes, which are discussed in Section 2. The goals
of this paper are to formalize the concept of a signature scheme based on any OWF
for signing a predetermined number of messages, to discuss techniques for designing



and analyzing such schemes and to present several results on the number and size of
messages that can be signed with a given scheme. In contrast to Rompel’s result [10]
showing that a signature scheme can be obtained from any OWF, the emphasis of
this paper is on efficiency and on a unified description of the general idea rather than
on rigorously proving the security of schemes with respect to a certain intractability
assumption.

Our motivations for considering the design of signature schemes based on OWFs are
as follows. First, there is a severe limitation on the diversity of mathematical problems
(such as factoring integers [9] or computing discrete logarithms in certain finite groups
[11]) that can at present be used as the bases for a digital signature scheme. Therefore
an alternative design approach with a much larger degree of freedom in choosing the
underlying cryptographic function appears to be of interest. Second, for applications
where few messages need to be signed, schemes based on an arbitrary one-way function
have the potential of being computationally more efficient than presently-used number-
theoretic schemes, but their disadvantage is that each public key can only be used for
signing a predetermined number of messages. Second, even if these schemes turn out to
be of limited interest as a normal digital signature scheme, they do have applications
in various contexts such as on-line/off-line signatures [2]. Our third motivation is
a theoretical one: the presented approach leads to interesting classes of challenging
combinatorial problems that appear to be also of certain independent interest.

2. Review of previously proposed one-time signa-
ture schemes

The number (i.e., diversity) of messages that can be signed by the Lamport scheme
with r public-key pairs is 2". Using the same secret key and public key, but allowing as
signatures all subsets of cardinality r of the set of 2r public-key components, the number
of messages can be improved to (2:). These sets are compatible because computing a
signature from a different signature requires the inversion of the OWF for at least one
value. A well-known result by Sperner [12] states that (2:) is the maximal number of
compatible subsets for the Lamport scheme.

Note that the size of the secret key of such a scheme can be reduced significantly
by generating all the secret-key components in a pseudo-random fashion from a single
secret key S. Similarly, the public key can be reduced to a single value P by applying
a one-way hash function to the list of public-key components.

A generalization of the Lamport scheme attributed by Merkle to Winternitz [7] is to
apply the OWF to the secret key components iteratively a fixed number of times: the
secret key consists of ¢ and z1, the public key is < f¥(xq), f*(z1) > where f* denotes
the t-fold application of f, and the ¢ 4+ 1 compatible signatures (for signing a messages
that can take on at most ¢ + 1 different values) are the pairs < f*~!(zq), f£=" 1 (21) >
for 0 < ¢ < t. (It is assumed here that the range of f is a subset of the domain of
f.) For t =1 the Winternitz scheme coincides with the Lamport scheme for signing a



single bit.

Meyer and Matyas [8] proposed as a further improvement to use more than two
chains of function evaluations: they observed that K! signatures can be obtained from
a scheme with K chains of length K, by allowing as signatures all combinations of K
vertices containing one node in each chain and one node at each level. This scheme
was generalized by Even, Goldreich and Micali [2] and later by Vaudenay [13] who
suggested that a large set of compatible signatures can be obtained by allowing all
signatures consisting of one node in each chain such that the total sum of the levels of
these vertices (within their chains) is constant. One of the results of this paper is the
analysis of this scheme which we will refer to as the “rake scheme”. In particular, we
will show that the described strategy yields the maximal number of signatures.

The described schemes can only be used to sign a single message. Merkle [7] pro-
posed the so-called tree-authentication scheme for signing several messages consecutive-
ly with a single public key P. The basic idea is that P allows to selectively authenticate
any one of a list py,...,pya of 2¢ public keys, each one of which, once authenticated,
can be used to sign a single message. The term authenticate (as opposed to sign) is
used here because the public keys to be authenticated must be known at the time of
setting up the scheme. The signature for the :th message hence consists of three parts:
the corresponding public key p;, a string of d values authenticating p; from P, and
a signature authenticating the message from p;. Merkle’s authentication tree will be
discussed briefly in Section 6 where it is shown that this scheme for signing several
messages is not optimal in general.

3. Preliminaries

In this paper, vertices and sets of vertices of a graph are denoted by small and
capital letters, respectively, and graphs, posets as well as sets of sets of vertices are
denoted by calligraphic letters,

This section summarizes some well-known definitions and results on partially or-
dered sets (poset). A poset is defined as a set with an antisymmetric, transitive and
reflexive order relation, denoted <. Two elements z and y of a poset Z = (7, <)
are comparable if and only if © < y or y < x and they are incomparable otherwise.
An element x covers a distinct element y, denoted y—<z, if and only if y < z and
y <z <z impliesz =y or z =x. A subset U C Z is called a chain if every pair of
elements of U is comparable, and it is called an antichain if every pair of elements of U
is incomparable. A chain C is mazimal if there exists no chain ' # C with C C C’, and
it is called mazimal-sized if |C'| < |C| for all chains C" of Z. An antichain A is mazimal
if there exists no antichain A’ # A such that A C A’ and it is called mazimal-sized if
|A’| < |A| for all antichains A’ of Z. The width of a poset Z, denoted w(Z), is the
cardinality of a maximal-sized antichains. A subset C' C Z is called a cutset if it meets
every maximal chain of Z. A cutset C is minimal if no subset of C' is a cutset.

Definition 1. For a poset Z = (7, <), a function r : Z — N is called a representation
function of Z if for all distinct x,y € 7, @ <y implies r(z) < r(y). A representation



function r is called a rank function if r(m) = 0 for all minimal elements m of Z and if
r—<y implies r(y) = r(z) + L.

Note that if a rank function for a poset exists then it is unique.

4. One-time signature schemes based on directed
acyclic graphs

4.1. The graph of a one-time signature scheme

Let B be a suitable large set (e.g., the set of 64, 96 or 128-bit strings) and let
fi, fa,... with f; : B — B be a list of one-way functions, where f; takes as input a
list of ¢ values in B and produces as output a single value in B. Consider a scenario in
which a secret key S consisting of u values sq,...,s, € B is chosen at random, and a
sequence of values S,41, Syy2,- .., is computed from sq,...,s, by applications of the
one-way functions f;. More precisely, for u 4+ 1 < 7 <1, s; is the result of applying
an appropriate OWF to a subset U(s;) (of appropriate size) of {s1,...,s;_1}, where
the order of the arguments is assumed to be fixed but is irrelevant for the further
discussion. Some of these computed values will not be used as input to a OWF and
are published as the public key P. Signatures consist of appropriately chosen subsets
of {s1,...,8:}.

In the following we need to distinguish between the structure of the described com-
putation for setting up a digital signature scheme and the particular values resulting
for a particular choice of the secret key. Consider a graph G = (V, E) with vertex set
V = {vy,..., v}, where v; corresponds to the value s;, and with edge set £ containing
the edge (v;, v;) if and only if s; is an input to the OWF resulting in s;. Hence the value
corresponding to v; can be computed from the values corresponding to the predecessors
of v, and it functionally depends on the value s; (corresponding to v) if and only if
there exists a directed path from vy to v;.

In such a graph the secret key set and the public key set correspond (without loss
of generality, see final paper) to the sets of vertices with in-degree 0 and out-degree
0, respectively. The graph G is assumed to be known publicly and can be used by all
users, but the values corresponding to the vertices for a user’s particular secret key
are kept secret by the user, except those values corresponding to the public key. A
signature scheme assigns a signature pattern, i.e. an appropriate subset of vertices, to
every message in the message space. A user’s signature for a given message consists
of the values (for that user’s secret key) corresponding to the vertices in the signature
pattern for that message, when the computation according to G is performed for that
user’s secret key. The set of signature patterns must satisfy certain conditions discussed
below.

Remarks.
(1) Of course, the OWF's used for evaluating different vertices can be different, as long
as a function together with the order of the arguments is uniquely specified for each



vertex.

(2) As mentioned before, the secret key components can be generated in a pseudo-
random manner from a single secret key. We will use the convention that when two
vertices in G have the same set of predecessors, then the two OWFs used in the cor-
responding computation steps are different and unrelated. We can hence extend G by
introducing an extra vertex sqo (the real secret key) and edges form sq to the vertices
S1y+ ., 8y. Similarly, one can without much loss of generality restrict the discussion to
graphs with only one public-key component because a list of public-key components
could be hashed using a secure cryptographic hash function.

(3) Messages that are too long to be signed by a given scheme can be compressed by a
one-way hash function prior to signing. Hence the message space of a signature scheme
can be chosen to coincide with the range of a secure cryptographic hash function, for
instance the set of 128-bit strings.

4.2. The associated poset of a directed acyclic graph

This section gives a formal definition of a one-time signature scheme based on a
directed acyclic graph (DAG) G = (V, E). The secret key pattern S(G) C V and the
public key pattern P(G) C V are defined as the sets of vertices with in-degree 0 and
out-degree 0, respectively. Let X be a subset of V. A vertex v is defined recursively
to be computable from X if either v € X or if v has at least one predecessor and all
predecessors are computable from X. A set Y is computable from X if every element
of Y is computable from X. Note that V and hence every subset of V is computable
from the secret key S(G).

A set X € V is called verifyable (with respect to the public key) if P(G) is com-
putable from X. Note that a set X is verifyable if and only if every maximal path (in
the sense that it cannot be extended to a longer path or, equivalently, a path from a
vertex in S(G) to a vertex in P(G) ) contains at least one element in X. A verifyable
set X is minimal if no subset of X is verifyable. Two minimal verifyable sets (MVS)
X and Y are compatible if neither X is computable from Y nor Y is computable from
X. A set of MVSs is compatible if they are pairwise compatible.

The computability relation on the set of MV Ss of a graph is transitive, antisymmetric
and reflexive, and hence the set of MVSs of a graph G, denoted W(G), forms a poset
(W(G), <) with computability as the order relation, i.e., we have X <Y for XY €
W(G) if and only if X is computable from Y. Note that two MVSs of G are compatible
if and only if they are incomparable in (W(G), <).

Definition 2. The associated poset of DAG G is the poset (W(G), <) of minimal
verifyable subsets of G.

In order to remove a possible source of confusion it should be pointed out that a
DAG in which every edge (x,y) is the only path from x to y has itself the structure of
a poset and W(G) is the poset of cutsets in this poset. However, we have avoided the
term “cutset” for the signature patterns because this term has a different meaning for



graphs.

Definition 3. A one-time signature scheme A for an acyclic directed graph G = (V, F)
is an antichain of the associated poset W(G).

Note that we are interested only in the set of signature patterns for a given message
space (whose cardinality must not exceed the size of the antichain), but not in the
particular mapping that assigns signature patterns to messages.

The important parameters of a one-time signature scheme A for a graph G = (V, F)
are the number |V| of vertices (which is equal to the sum of the size of the secret
key and the number function evaluations required for computing a public key from a
secret key), the number | A| of signatures which must be at least equal to the size of
the message space, and the maximal size of signatures, maxyxe4 |X|. The following
interesting problems almost motivate themselves. First, for a given graph to find a
large (ideally a maximal-sized) antichain in the associated poset. Note that w(W(G))
denotes the maximal size of such an antichain. Second, for a given size of the message
space to find a graph with few (ideally the minimal number of) vertices allowing the
construction of a one-time signature scheme. Third, both problems should be treated
with a constraint on the maximal size of signatures.

4.3. Representation functions and generating functions

It follows from the definition of a representation function r of a poset Z = (7, <)
that r(z) = r(y) implies that x and y are incomparable. Hence for any representation
function r of the associated poset (W(G), <) of a given DAG G and for any integer k,
the set D(G,r, k) defined by

D(G,r k) ={U e W(G) :r(U) =k}

is a one-time signature scheme. Let Wy () be the generating function of the cardinal-
ities of the sets D(G,r, k), i.e., let

Vg, (z) = Z 2"V = Z |D(G,r, k)| - ;ck,
&

UeW(G)

and let (G, r) be the maximal cardinality among these sets, i.e., let
8(9.7) = max(ID(G. 7, b))

be the largest coefficient of Wg ().

In order to find good signature schemes for a given graph, we need to find a good
representation function, that is one with a large maximal coefficient. For U € W(G)
for a given DAG G let Cg(U) be the set of vertices of G that are computable from U
but are not contained in U:

Cg(U) ={v:v &€ U and v is computable from U}.



Let ¢g : W(G) — N be the function defined by

cg(U) = [Cg(U)].
The following theorem is proved in the Appendix.

Theorem 1. For any DAG G, the function cg is a representation function of the
associated poset W(G) of G.

For many graphs G, ¢g is an optimal representation function in the sense that
B(G,cg) is equal to the maximal number w(W(G)) of signatures patterns. However,
this is not true in general as the counter example shown in Figure 2 demonstrates. For
this tree 7 we have 3(7,cr) = 27 but w(W(7)) = 28 because (G, r) = 28 for the

representation function defined by

) ::{ er(U)+2 ifseU

cer(U)  otherwise,
where s is a distinguished vertex in Figure 2.

Let Ci denote the graph consisting of a single path connecting k vertices, which we
will call a chain of length k. Its generating function is given by
1= zk

k—1
\I}W(Ck)@ck (‘77) = Z g =

=0

(1)

1—z

.

Let Gq,...,Gr be k DAGs, let F be the graph consisting of unconnected copies of
Gi,...,Grand let G =[Gy, ..., G| be the DAG obtained from F by combining Gy, ..., G
by introducing a new vertex v as well as edges from the k& public keys of Gy,..., Gy to
v. Let rg,,...,rg, be some representation functions for Gy, ..., Gy, respectively. Then

the MVSs of F are all sets S = Ule S; where S; is a MVS of G;, for 1 <1 < k. The

function . .
T}'(U Si) = Ergi(si)
=1 =1

is a representation function for F and the corresponding generating function is

k
Uw)er (2) = TT Ywg)ro, (%) (2)
=1

as will be shown in the final paper. Similarly, the MVSs of G are those of F together
with {v}, i.e., W(G) = W(F)U{{v}} and rg defined by rg({v}) =0, rg(S) = r£(S)+1
for S € W(F) is a representation function for G and Wy (g),,(z) = 1+ 2¥wr),,.(z) =
R Yw(g,),rg, (z) is the corresponding generating function. Note that recursive
application of this equation and of (1) allows one to compute the generating function
Uy (7),e, () for arbitrary trees 7.

5. Results on optimal graphs and signature schemes



A reasonable implementation of a list of OWFs f1, fo, f3... with one, two, three,
etc. arguments is by implementing a OWF f; with two arguments and implement-
ing the function f; with one argument as fi(z) = fa(z,2) and the functions f; for
i >3 as filze,...,x;) = fo( fica(2r, ..., 2i21),2;). The function fy can for instance
be implemented by applying DES in an appropriate mode, but much more efficient
implementations of good candidate OWFs are possible.

In the described implementation based on a function f;, the graph could be consid-
ered to consist only of vertices with fan-in 1 or 2. In the sequel we discuss the problem
of maximizing the number of signature patterns for a given number n of vertices under
this fan-in restriction. Let v(n) be the maximal number of MVSs obtainable for a
graph with n vertices and let u(n) be the maximal number of compatible MVSs for a
graph with n vertices, i.e.,

v(n) = max{|{W(G)|:G = (V,E) with |V| =n}
p(n) = max{w(W(G)): G = (V,FE) with |V| =n},

where G has fan-in at most 2 and public key of size 1. Likewise we define v*(n) to be
the maximal number of MVSs obtainable for a tree with n vertices and p*(n) to be the
maximal number of compatible MVSs for a tree with n vertices.

In this section we derive concrete and asymptotic results on p(n) The size of sig-
natures is also an important efficiency parameter and schemes requiring only short
signatures will be discussed in Section 6.

For a DAG G = (V, E) we define Rg, to be the forest consisting of [ identical graphs
G. As pointed out in the previous section, the poset MVSs of Ry consists of all [-tuples
(S1,...,50) for which S; is a MVS of the i-th copy of G.

Let rg be any representation function of W(G) such that there exist S, 5, € W(G)
where rg(S1) — rg(S2) = 1. We define the representation function r of W(Rg,) by
r(S) = Sk, r6(S;) for an MVS S = (Sy,...,5) € W(Rg,).

Theorem 2. For the representation function r defined above we have

{ 1
hm ,B(Rg’l, T‘)i; = —
{—o0o0 m

oV2w
where o is the standard deviation of rg(S) if S is chosen uniformly from W(G).

Proof. Let Y be the random variable defined by Y = (rg(S) — E[rg(S)])/o where S is
chosen uniformly from W(G). The distribution of Y is a lattice distribution with span
1/o, E[Y] =0 and E[Y?] = 1. Now we can apply theorem 3 of [3, p.490] to complete
the proof (see final paper for details). O

It schould be mentioned that 3(Rg,,r) = O(m!/V/1) is satisfied for any choice of
rg. Theorem 2 implies the following result which will be proved in the final paper.

Corollary 3.
lim log, p(n) > max log, v(m)

n— 00 n - m m



The DAG Gi6 shown in figure 4 has 16 vertices and its associated poset has 164
vertices. R, has therefore O(164'/v/1) signatures. In order to combine [ copies of
the graph in a tree with fan-in 2 we need a tree of [ — 1 additional vertices. Hence we
can asymptotically sign (log,(164)/17) - n = 0.4327n bits with n vertices. Theorem 4
below shows that this number cannot be achieved by trees.

Let a sequence of trees 7y, 71, . . . be defined recursively by 7y = C3 and Ty = |74, T3]
Then 7, has 15 vertices and its associated poset has 101 vertices. Let this tree be
repeated [ times with any top-layer consisting of [ — 1 vertices. With this scheme one
can sign asymptotically log,(101)/16 ~ 0.4161 bits per vertex. Theorem 4, which is
proved in the Appendix, shows that this is very close to the achievable optimum for
trees.

Theorem 4. Let T be a tree with n vertices. Then
IW(T)| < 220+ where v = log,(685/216) /4 = 0.4162.. .. (3)
In other words, no tree with n vertices allows to sign more than v(n + 1) bits.

The constant 4 can be reduced slightly by using more detailed arguments in the
proof. However, this upper bound is almost tight as the previous example of recur-
sively defined trees demonstrates. It can be verified numerically that the lower bound
obtained for 7; approaches a constant which agrees with the best upper bound ~ up
to 8 decimal digits, but it remains to prove that there exists a constant which is both
upper and lower bound.

The final paper will contain various results on optimal small graphs, i.e., exact values
for p(n) and p*(n). For all n > 8 we have investigated we have p(n) > p*(n). Table 1
in the Appendix summarizes some of these results.

6. Concrete graphs and implementations

The length of signatures is an important efficiency parameter for a signature scheme.
Furthermore, there must exist an efficient algorithm for assigning a signature pattern to
a given message. In this section we discuss schemes with signature patterns consisting
of at most [ vertices. Let p(n,l) be the maximal size of a one-time signature scheme
A with elements of size at most [ for a graph with n vertices.

The most reasonable choice for a graph appears to be a forest of [ equal-length
chains with a top layer combining these chains to a single-component DAG.

Let Ry, be the forest consisting of [ chains of length k£ whose vertices will be denoted
by vi1,...,vix for the ith chain. According to (1) and (2) the generating function of
Ry, is given by

UW(R, 1)y, (2) = (11__ik)l =2 %J(—l)j(l-) (H il__klj - 1)- (4)

>0 j=0 J
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The last step will be proved in the final paper.

In a practical implementation of such a scheme, the public key consisting of the
[ top elements of the chains would of course be hashed cryptographically to a single
public-key component, i.e., the chains would be connected to a rake-shaped tree. We
therefore refer to the scheme based on this graph, which is discussed below, as the
“rake scheme”. Similarly, the secret key set consisting of the [ bottom elements could
be generated pseudo-randomly from a single secret key, thereby generating a symmetric
hammock-shaped graph.

The poset of minimal verifyable sets of Ry, consists of all I-tuples (v14y,...,014,)
with 1 < a; < k. This associated poset W(Ry,) is equal to the product of [ chains
(in the poset terminology) of length k. It has been shown that a poset consisting
of a product of chains has the Sperner property [1] which implies that the maximal
number of signature patterns can be obtained by using the representation function
introduced in Section 4.3 because this function is a rank function. In other words, we
have w(W(Rk,1)) = B(Ru,, CRM). It will be shown in the final paper that for a fixed
[, wWW(Ryg,)) can be written as a polynomial in k of degree [ — 1.

Theorem 5. We have w(W(Ry)) = ark'™" + O(k'"2), where ay = 5; DIV
(—1) (;)(1/2 — )T and where limy_o oy - V1 = (/6/7.

The described rake scheme Ry, appears to be the simplest graph for implementing
one-time signature schemes for a fixed signature lenth, an we conjecture that it is
asymtotically optimal in the sense that lim;_.. p(n, )v/1/(n/1)'~" = oy. However, there
do exist graphs that beat the rake scheme in the coefficient of the second term k'~2.
As a realistic example, choosing the parameters [ = 14 and k = 2'° results in a digital
signature scheme for a message space of size 4.9 - 10® and thus allows to sign arbitrary
128-bit messages.

7. Concluding remarks and outlook

The final paper will also describe an efficient algorithm for enumerating the sig-
nature patterns of Ry, i.e. for assigning the signature pattern to a given message.
Furthermore, schemes for signing a fixed number of messages will be discussed in the
final paper, where it will be shown that Merkle’s authentication tree is not optimal for
this purpose.

In applications where the number of messages to be signed is limited (e.g. in certain
public-key certification schemes), the rake scheme combined with Merkle’s authentica-
tion tree appears to be a realistic alternative to conventional digital signature schemes.
However, independently of possible applications, we believe that the presented general
approach to signature schemes based on one-way functions is also of significant theo-
retical interest. It leads to a collection of interesting combinatorial research problems
which will be described systematically in the final paper.
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Appendix
Proof of Theorem 1.

Let U; and Uj be distinct MVSs with U; < U;. We need to prove that |Cg(Uy)| <
|Cg(Uz)|. Let v be any element in Cg(Uy). All predecessors of v are computable from Uy
by definition. Since U is computable from U, any vertex that is computable from U is
computable from U;. Therefore all predecessors of v are computable from U,. If v were
in U, then Uz would not be minimal. Thus v € Cg(Uz) and we have Cg(Uy) C Cg(Us).
Moreover, Uy is not a subset of U; because U, is minimal. Hence there exists a vertex
s € Uy with s € Uy which is computable from U; because U; is computable from Us.
Therefore s € Cg(Uy) and s ¢ Cg(U;) and thus we have Cg(U;) # Cg(Usz). Hence
Cg(U1) is a proper subset of Cg(U,) which implies that |Cg(Uy)| < |Cg(Us)]. O

Proof of Theorem 4.

Let f:x— x+ (2z)~! +(82%)~!. We have f(z)f(y) > f(zy+ 1) forall y > = > 1.
This has been verified for instance using MAPLE by replacing x = z+1 and y = z+¢+1
and checking that (f(z)f(y) — f(zy + 1))642°y*(zy + 1)* is a polynomial in z and ¢
with no negative coefficients. Moreover, we have f(x 4+ 1) < % (z) for x > 3. Now
define ¢(7') :=log,(fF(IW(T)]))/(|T]+ 1). We will show that for all trees

9(T) <~ (5)

by induction over |7|. There are four trees with at most 3 vertices which can easily
be checked to satisfy equation (5). (The maximal value is ¢(C3) = v.) Now assume
that (5) is satisfied for all trees with at most n vertices. Let 7 be a tree with n
vertices. We show that (5) is satisfied for the tree [7] that is constructed from 7 by
adding one new root node. Note that v > log,(f(4)/f(3)). Then we have ¢([7]) =
loga (FOV((T]) + 1))/ (n +2) < (logy(FOVT))) + loga( F(4)/ F(3)/(n +2) < (30 +
1) +1og,(F(4)/1(3)))/(n +2) <v(n+2)/(n+2) < 7.

Now let [7,7'] be any tree with n 4+ 1 vertices that is composed by combining
7 and 7'. Note that [7]| 4 |7'| = n. By the assumption of the induction we have
log, (f(IW(T)I)) < y(I7]+ 1) and log,(f(IW(T')])) < ~(|7'| + 1). Thus it follows
g([T,T"]) = log,(S(IWT, TDN)/UT, T']|+1) = log, (S(IWV(T)[-W(T")|+1))/(IT |+
|T'[+2) < log,(f(IW(T)]) +1ogo(F(IWV(T)D) /(T [+1T'1+2) < (VT [+ 1) +~(1T"]+
D)/(TI+ 17" +2) =~.
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To finish the proof we have to note that (5) implies the theorem. Indeed let n = |T|
and note that z < f(z). O

The quantities p(n) and p*(n) for small n

The following list summarizes the size of the optimal one-time signature scheme for
trees and the size of the best one-time signature scheme we have found for general
DAGs, which provides a lower bound on u(n).

number n | g*(n) | lower bound for || number n | g*(n) | lower bound for
of vertices p(n) of vertices p(n)

8 3 4 15 19 25

9 4 5 16 23 33

10 ) 7 17 29 45

11 7 9 18 39 57

12 8 12 19 53 79

13 11 15 20 67 101

14 14 20 21 85 139

Figures

Figure 1: An example of a DAG (left) and its associated poset (right). This graph is
special in that the poset does not have a rank function.
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Figure 2: A tree 7 for which the function ¢7 is not an optimal representation function.

Figure 3: An optimal tree with 9 vertices and 4 compatible signature patterns, and a
general DAG with 9 vertices and 5 compatible signature patterns.
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Figure 4: A DAG with 16 vertices whose associated poset has 164 vertices
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