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Abstract. A universal one-way hash function (UOWHEF) is a shrinking
function for which finding a second preimage is infeasible. A UOWHEF,
a fundamental cryptographic primitive from which digital signature can
be obtained, can be constructed from any one-way function (OWF). The
best known construction from any OWF f : {0,1}" — {0,1}", due to
Haitner et. al. [2], has output length O(n") and O(n®) for the uniform
and non-uniform models, respectively. On the other hand, if the OWF
is known to be injective, i.e., maximally regular, the Naor-Yung con-
struction is simple and practical with output length linear in that of the
OWF, and making only one query to the underlying OWF.

In this paper, we establish a trade-off between the efficiency of the
construction and the assumption about the regularity of the OWF f.
Our first result is a construction comparably efficient to the Naor-Yung
construction but applicable to any close-to-regular function. A second
result shows that if | f = f(z)| is concentrated on an interval of size 25,
the construction obtained has output length O(n-5(n)®) and O(n-s(n)*)
for the uniform and non-uniform models, respectively.

Keywords: Complexity-Based Cryptography, One-Way Functions,
Universal One-Way Hash Functions, Computational Entropy.

1 Introduction

1.1 Constructions of Cryptographic Primitives

A main task in cryptographic research is to construct a (strong) cryptographic
primitive P from a (weaker) cryptographic primitive @, for example to con-
struct a pseudo-random generator from a one-way function (OWF). This paper
is concerned with constructing a universal one-way hash function (UVOWHF), a
fundamental cryptographic primitive, from a OWF.

The term “construct” means that one gives an efficient reduction of the prob-
lem of breaking the underlying primitive @ to the problem of breaking the con-
structed primitive P. For two primitives P and (), the most basic question is
whether P can be constructed in principle from @, meaning that the construction
and the reduction must be efficient (i.e., polynomial-time) and that the reduc-
tion translates a non-negligible probability of breaking P into a non-negligible
probability of breaking Q.
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The principle possibility of constructing a UOWHF from a OWF was proved
by Rompel [7], using a highly inefficient construction and reduction. When trying
to improve the construction, one can choose two orthogonal routes. Either one
improves the construction for a general OWF, or one makes specific assumptions
about the OWF allowing for special-purpose constructions that do not neces-
sarily work in general, and can hence be more efficient. Of course, a key issue is
how restrictive or how plausible the assumption one has to make is.

The best known general construction of a universal one-way hash function
from any one-way function f : {0,1}" — {0,1}™, due to Haitner et. al. [2],
has output length O(n”) and O(n®) for the uniform and non-uniform cases,
respectively. The best known special-purpose construction is due to Naor and
Yung [6] and makes a single call to f (per argument to the constructed UOWHF),
and the output length is linear in n, but the assumption one needs to make is
that f is injective, which is a very strong assumption.

In this paper we investigate the middle grounds between completely general
constructions and those requiring such a very specific assumption. Concretely,
we investigate the trade-off between the regularity assumption for f and the ef-
ficiency of the construction. The regularity is characterized by how concentrated
the preimage size spectrum, the random variable |f~!(f(X))| corresponding to
the preimage size of the function value f(X) for a uniformly random argument
X, is. For injective functions, the preimage size spectrum is constant 1. Prior to
our work, we do not know of any specific construction for a function which is
anywhere between regular and arbitrary.

In this work we relate the assumptions made about the spectrum of f to the
efficiency of the overall construction. Qualitatively speaking, the more is assumed
about the regularity of f, the more efficient is the resulting construction.

1.2 Contributions of This Paper

A first result on the way to fully utilizing an assumption about the regularity of a
function is an almost optimal construction of a universal one-way hash function
from a regular (or almost regular) one-way function. Recall that a function is
2"-regular if for every image there are 2" preimages.

Following previous work, for simplicity of presentation, we assume that for a
one-way function f the input length n is the security parameter. For this case,
we get a construction with output length and key length O(n - a(n) - log(n)),
where the construction makes O(a(n) - log(n)) invocations to f for any super-
constant function a(n). This improves on [8] by a factor of log(n) (see Section
[[3] for comparison with previous work).

We introduce a natural relaxation of the notion of regularity:

Definition 1 (roughly-regular function). A function f : {0,1}" — {0,1}™ is
called (r,s)-roughly-regular, if for every x in {0,1}" it holds that |f=(f(x))|
lies in the interval [r,rs]. A family of functions f = {fn}n>o0 is called (r,s)-
roughly-regular, where (r,s) = (r(n),s(n)), if for every n it holds that f, is
(r(n), s(n))-roughly reqular. Whenever s(n) = n° for some constant c the family
1s called r-polynomially-roughly-regular.
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We call r and s the regularity and the roughness parameters of f, respectively.
Indeed, whenever the roughness parameter is trivial, that is, s(n) = 1 for all n,
this definition coincides with the standard definition of an r-regular function.
This definition, we argue, is both intuitive and quantifies the irregularity of a
function.

For the case where f is a 2"-polynomially-roughly-regular OWF, we observe
that the construction for the 2"-regular case with minor changes works (we omit
the details in this extended abstract). For a pseudo-random generator based on
a regular OWF an analog relaxation was already observed by [I].

Finally, in Section @ we utilize the ideas developed in Section 3 and improve on
[2] with the most general version (Theorem [B]). We establish a trade-off between
the regularity assumption made about the underlying one-way function and the
overall efficiency of the construction. When f is a (27(™),25("))-roughly regular
one-way function, we show a construction with output length and key length
of O(n - s*) for the non-uniform model and of O(n - %) for the uniform model.
Indeed, our construction ties up both ends of the existing constructions: When
s is constant, we get an almost linear construction, and when s = O(n) our
construction matches that of [2].

The analysis of the construction presented in Section [3] improves by a factor
of O(log?(n)) on the construction presented in Section @ when instantiated with
a 2"-regular function.

1.3 Related Work

Inaccessible Entropy. Our work uses the framework of [2] for constructing
UOWHFs from OWFs using the notion of inaccessible entropy. Inaccessible en-
tropy was first introduced in [5] and along with work done in [3] and [4], it
completes the construction of the fundamental cryptographic primitives: univer-
sal one-way hash functions, pseudo-random generators and commitment schemes
using this notion.

A Regularity-Efficiency Trade-Off for the Construction of a UOWHF.
In [§] it was first shown how to construct a UOWHF for the almost-regular case.
Our construction achieves the same query complexity to the underlying one-way
function (O(a(n) - log(n)) calls), but is superior in two aspects: It makes its
queries to the underlying one-way function in a non-adaptive manner, and our
resulting primitive has an output (and seed) length of n - log(n) - a(n) whereas
the construction from [8] has an additional log(n) factor.

While for the almost-regular case the improvement is not dramatic, we believe
that our analysis, which extends the approach suggested in [2], sheds more light
on what is achieved at each step. The way the almost-regularity property of the
underlying one-way function is utilized later allows to generalize it to any level
of regularity. This is in contrast to the construction in [8] which is more ad-hoc.
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2 Preliminaries

2.1 Notations and Basics

Throughout the paper we use capital letters to denote random variables and
small letters for specific values they assume. We denote by N the set of natural
numbers. For an integer n we denote by [n] the set {1,...,n}. For two bit-
strings « and y we denote their concatenation by z||y. For a random variable
X we denote by E[X] and V[X] its expectation and variance, accordingly. For
an event A we denote its indicator random variable (which assumes the value
1 whenever A happens and 0 otherwise) by 14, and its complement event by
A. We implicitly make use of the fact that E[14] = Pr[A]. The support of a
random variable X is defined as Supp(X) = {x : Pr[X = z] > 0}. For a function
f X — Y, we define the preimage spectrum function 7y : X — N, where
75(@) = 1/ (@)

For understood Y7 x --- x Y,, we denote by ¢; : Y1 x --- x Y, — Y; the

projection onto the i’th component. We extend this to a set S C Yy x --- x Y,

with ¢;(S) f {#i(s) : s € S}. A non-decreasing function f : N — N is called

super-constant if for all ¢ € N there exists an n € N, such that f(n) > c. All log
functions are to the base 2.

We cite the Hoeffding bound and bring the definition of a t-wise independent
hash family in Appendix [Al

2.2 OWF and UOWHF

Definition 2 (OWF). A family of functions {f : {0,1}*() — {O,l}m(p)}pej\f,
where p is a security parameter, is a one-way function if:

1. There exists an efficient algorithm that, given x, evaluates f(x).
2. For any efficient randomized algorithm A:
P [AQ1P, f(@) € 7 (f(2))] < negl(p) -
2<{0,1}7(0)
Definition 3 (UOWHF). A family of keyed functions {{fi : {0,1}(») —
{0, 1}”L(p)}keK(p)}peN, where p 1s a security parameter, is a universal one-way
hash function if:

1. There exists an efficient algorithm that, given x and k, evaluates fi(z).

2. m(p) < n(p).
3. For any pair of efficient randomized algorithms (A, As):

P [Aa(@ko) € S (@) \ {2)] < negl(p) -
k<K (p),(x,0)«A1(1P)

As noted, we focus on families of functions where the input domain parameter n
equals to the security parameter, i.e., n(p) = p, in which case we parameterize the
family by n. Additionally, we slightly abuse notation when referring to a function
f:{0,1}" — {0,1}™) where formally f = {f, : {0,1}* — {0,1}("},
is a parametrized family of functions, and often we omit the security parameter
when referring to f,, or other parametrized values.
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2.3 Entropy Measures

For a random variable X and x € Supp(X) the point-wise entropy of X is

Hx(z) def —log(Pr[X = z]). The Shannon entropy H(X) and min-entropy
Ho(X) of X are defined as:

These measures extend naturally to the case of a joint distribution of two random
variables X, Y. Namely, the conditional point-wise entropy for (z,y) € Supp(X,Y)

is Hxy(z,y) Lef _ log(Pr[X = z|Y = y]) and the conditional Shannon entropy is
HXY)= E  [Hxy(z,yl= E [HX]Y =y)] = HX,Y) - H(Y).
(z,9)(X,Y) y<Y

The next definition measures the average and absolute guarantees as for the
preimage-size of f in terms of entropy bits.

Definition 4 (preimage entropy measures). For a function f : {0,1}" —
0,1} define its real preimage-entropy as H,(f) def H(X|f(X)), where X is
uniformly distributed on {0,1}™. f has min-preimage-entropy at least k = k(n)
(and denote this by Hp min(f) > k), if there is a negligible function € = e(n) such
that
TPI“ [HX|f(X)(.’IJ, f(.’l,‘)) > k‘} >1—e
z<+{0,1}"

As the argument X in the definition is uniform, we have that for all x it holds
that Hx|yx)(w, f(z)) = log(ms(z)).

2.4 Collision Finders and Accessible Entropy

Definition [ captures the average and absolute preimage set size guarantees for
f. Clearly, when f is shrinking it has high preimage-entropy. Recall that our goal
is to build a universal one-way hash function, namely, a shrinking function for
which there exist many preimages, but at the same time any efficient algorithm,
when given an x, cannot compute a different preimage from f=1(f(x)).

Definition 5 (f-collision-finder). Let f : {0,1}" — {0,1}™™ be a function. An
f-collision-finder is a randomized algorithm A such that A(z) € f=1(f(x)) for
every x € {0,1}".

The requirement that A(z) outputs a preimage of f(x) can be made without
loss of generality, as every algorithm A can be changed to one that outputs x
whenever A(x) ¢ f=1(f(x)).

Using the notion of an f-collision-finder, one can define a computational ana-
log of the definitions of real- and min-preimage-entropy of f. The analogous
definitions capture the maximal, average, and absolute size of the preimage sets
that are accessible to any efficient algorithm.
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Definition 6. A function f:{0,1}™ — {0,1}™™) has accessible max-preimage-
entropy at most k = k(n) if there exists a family of sets { Sz }ze10,13» such that for
any efficient randomized f-collision-finder A, there exists a megligible function
€ = e(n) such that for all sufficiently large n:

1. Pr [A(z)eS;]>1—e
z<-{0,1}n

2. log(|S:]) < k for all x.

Definition 7. A function f : {0,1}" — {0,1}™("™) has accessible average max-
preimage-entropy at most k = k(n) if it satisfies Definition [0 where instead of
(2. ) we have:

2. E [log(|S))] < k.
z<-{0,1}n

We stress that these two definitiond] are different from the classical definitions
of Shannon entropy. As they capture the inputs accessible only to efficient algo-
rithms, both definitions only bound from above the performance of such algo-
rithms. Specifically, for an arbitrary function, we do not know how to compute
exactly (as in the standard definition of entropy) these bounds. Nevertheless, as
we see next, these bounds are a useful tool (see also [5]). We use the notation

eff eff :
thlénax(f) <kand Hy, o max(f) <k to denote that the corresponding bound
olds.

The next two definitions are used to distinguish between two types of ’entropy
gaps’:

Definition 8. A function f : {0,1}" — {0,1}™™ has an average inaccessible

preimage-entropy gap A = A(n), if there exists some k = k(n) such that:
H;ifwgfmax(f) = k S k + A S Hp(f) . (1)

That is, there is a gap of A between its average accessible max-preimage-entropy

and its preimage-entropy. At times we will refer to this gap as an average entropy
gap or a weak type of gap.

Definition 9. A function f : {0,1}" — {0,1}""™) has an absolute inaccessible
preimage-entropy gap A = A(n), if there exists some k = k(n) such that:

Hnax(F) S B <k + A< Hpin(f) - (2)

!'In fact, one may consider a weaker notion of algorithm-dependent accessible max-
preimage-entropy and algorithm-dependent accessible average max-preimage-entropy
where the sets {S:} may also depend on the algorithm. Such a definition would
only require that for every algorithm there exist sets {Sa,z }. This weaker variant of
Definitions [B] and [7] is enough for the purpose of constructing a universal one-way
hash function and potentially may be easier to satisfy. In this work we do not make
use of the weaker definition.
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At times we will refer to this gap as an absolute or strong gap.

An important observation is that UOWHFs are just length-decreasing func-
tions with accessible max-preimage-entropy 0, and an appropriate absolute en-
tropy gap. Haitner et. al. observed that it is possible to achieve a noticeable
gap of inaccessible entropy as an intermediate step, and then amplify it and
transform it into a UOWHF.

2.5 Entropy Measures for t-fold Parallel Repetitions

For a function f : X — Y we define its t-fold parallel repetition f!: X* — Y
as fYx1,...,m) = (f(x1),..., f(x¢)). It is well-known that using the definition
of conditional entropy, properties of log() and noting that choosing a random
2zt € Xt can be done by t independent choices of z,

Hy(f) = H(X1, ..., Xo| f(X1), ., f(X2) = H(Xa|f(X1) + ..
HHX (X)) =t-Hp(f) - (3)

The corresponding computational bound is given by the following claim and its
corollary. Namely, the accessible preimages of the t-fold repetition of f come
from the product set of the accessible preimages set of f:

Lemma 1. Let f : X — X with accessible maz-preimage-entropy at most k(n),
with sets Sy (as in Definition[@). Then for t = poly(n) any efficient f*-collision-

finder A’ outputs a collision (except with negligible probability) from the set
def

Sgt = Spy X oo X Sy,

Proof. Let A’ be an f'-collision-finder algorithm with probability € to output a
collision 7, ..., z} outside of S,:. Observe that this implies that for a randomly
chosen coordinate i < [t] it holds that Pr[¢;(f!(X")) ¢ Sy, (xt)] > €/t. This calls
for the following f-collision-finder A: on input = choose uniformly at random a
location 4 from [t] and uniformly at random inputs z1, T2, ..., Zi—1, Tit1, ..., Tt
from X. Set x; = = and return ¢;(A’(x1,...,z¢)). It follows that A outputs
a collision for f outside of S, with probability greater than e/t. The lemma
follows. O

Using linearity of expectation, the union bound, Definitions [@ and [[l and the

fact that log(|Syt|) = Xt_,10g(|Sx,|), we get:
Corollary 1.

1. If HST L (f) <k then HEE | (F)) <t k.

2. [f Hgifwgfmax(f) < k then H;,fgvgfmax(ft) <t- k.

2.6 An Overview of the Construction of Haitner et. al.

The construction consists of two independent parts. First they show how to get a
function with a noticeable gap of average inaccessible entropy from any one-way
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function. Specifically, they show that a prefix of a random length of a three-wise
independent hashing of the output already has some weak form of an average
entropy gap. Namely, on average over the inputs to the new construction, there
is a noticeable gap of A = Q2(logn/n) between the real preimage-entropy and
the average accessible max-preimage-entropy.

The second part of the construction starts with any function with some no-
ticeable gap A and shows how to obtain a UOWHF. This is achieved using the
following steps:

1. Gap amplification and transformation of an average type gap into an absolute
type of gap.

Entropy reduction.

Output length reduction.

Random inputs collision-resistance to a UOWHF.

Removing the non-uniformity.

Gu N

The composition of Steps 2 through 5 of their construction is summarized in
the following theorem, which we later use in a black-box manner:

Theorem 1.

1. There exists an explicit black-box construction taking parameters a function
Y = {ntnen, where 1y, : {0,137 — 0,1} and a number T = 7(n)
such that if HES . (n) + w(log(n)) < 7(n) < Hp(¢y) holds, the con-
struction implements a UOWHF with output length and key length O(A(n)).

2. Moreover, for all efficiently computable | = 1(n) there exists an explicit black-
boz construction taking parameters 1 (as before) and sets of numbers T =
T(n) = {Tnz}i(znl); such that if one of {(n, Tnz)}i(znl) satisfies the condition of
part {.), the construction implements a UOWHF with output length O(A\(n)-
I(n)) and key length of O(A(n) - l(n) - log(l(n))).

3 UOWHF from a 2"-Regular OWF

Let f : {0,1}™ — {0,1}™ be a 2"-regular one-way function. Our construction
also works in two steps: First we obtain an entropy gap of O(log(n)) applying
f only once and use a variant of the Naor-Yung construction. Next, we show
that the type of gap that we get by our first step is almost of the required
absolute type. Namely, the average entropy gap is essentially concentrated on a
smaller interval of size almost O(log(n)), and in this case the structured gap can
be transformed to an absolute type of gap via taking only a super-logarithmic
number of independent samples. The main result of this section is:

Theorem 2. Let f : {0,1}* — {0,1}™(™) be a 27-regular one-way function,
where r = r(n) is efficiently computable. Then there exists an explicit black-box
construction of a universal one-way hash function based on f with output length
and key length of O(n -log(n) - a(n)) for any super-constant function a(n).

2 Lemmas 5.3 — 5.4,5.6 in [2].
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3.1 Inaccessible Entropy from 2"-Regular One-Way Functions

In this case f has exactly 2"~" different images. If we randomly distribute the
images among b buckets, we expect to have roughly 2"b_r images in each bucket.
Consider the composed function, F'(z, g) = (g(f(x)), g) where g is the description
of a three-wise independent hash-function from some family G. We show that an
appropriate choice of the family G allows us to reduce the preimage inaccessibility
of F' to the hardness of the underlying function f.

For injective one-way functions this was already observed in [6]. The difference
is that for an injective f, the resulting F' is already a universal one-way hash
function, whereas in the case where f is regular we get:

Lemma 2. Let f: {0,1}" — {0,1}™™) be a 2" -regular one-way function where

r =r(n) is efficiently computable. Let d > 0 and let G = G(n) = def g{n—m)—ddlog(n)
be a family of constructible three-wise z'ndependent hash functions. Then the func-
tion F: {0,1}" x G — {0,1}(n=7)=4dlog(n) 5 G given by: F(z,9) = (9(f(x)), 9)
satisfies the following properties:

1. Hy(F) > r+ 3dlog(n).
9 Het (F) <.

p,max
Proof.

1. Recall that when the input is chosen uniformly at random from the input
space the preimage-entropy of F' is just the expected log-value of the size of
the preimage set. We first compute the expected number of preimages for a
fixed x with some random ¢ from G. Since F(z,g) already determines g it
follows that any potential preimage must have the same g component.

For all fixed x, g we have the set equality:

FYF@g)= U (@) x{g) (4)
y':9(f(2))=9(y")

and the union is over disjoint sets. We get that:

mr(@,g) =mp@) + D> Ag(pa=gw) - 1F W)
y;ﬁf(w)
=27 14+ > yen=aw) | (5)
y' #f(x)

where due to the regularity it holds that 7¢(z) = |f~!(y)| = 2".
Now we observe that for every fixed x € {0,1}" and v’ # f(z)

—(n—r—4d1 M
E [ly(s(a)=g] = 27077100 (6)
9§

where the equality is due to due to the pair-wise independence of G.
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Using ({), (@) and linearity of expectation we have that

]? [rr(eg)l=2"- | 1+ Z ]? []lg(f(w)):y(y’)] > grtadios(n) , (7
9e9 vAf(2) 99

where again due to the regulariry the summation is over 2"~" — 1 indicators.
Furthermore, as the family is three-wise independent, we also have that
for different f(x),y’,3” it holds that the random variables 14(f(z))=g(y/) and
Lg(f(2))=g(y”) are independent (and in particular, uncorrelated) and therefore

2
Vel g = @) YV [Lygen=aen] < (270 (s)
99 A (@) 9

where the equality holds for the sum of uncorrelated random variables and

the the inequality holds as for all indicator random variables V[14] < E[14]
and using (6l). Now, the Chebysev Inequality establishes that for all a > 0:

Pr
e

Whenever the event in ([@) does not happen plugging ([{]) we obtain

1
a2

mr(z,9) = E [mr(z,9)] 9)

g+<G

> - 2r+2~d-10g(n)] <

7TF(.’£, G) > 2r+4-d-log(n) - 2r+2-d-log(n) > 27‘+3‘5-d-10g(n) ,
for all fixed a and sufficiently large n.
Finally, recall that due to the regularity we always have 7z (x, g) > 2" and so

using conditional expectation on the event from (@) with o = 5 and plugging
(@) we obtain:

2§ -(3.5-d-log(n)) >r+3-d-log(n) . (10)

E [log(np(z,g9))] >+ 9

g<-g
As this holds for every fixed z, it also holds for a random one, and we are
done.

2. We show that any efficient algorithm that finds a collision for a random
input (X, G) outside of f~1(X) x {G} leads to one that inverts f. Let A
be an F-collision-finder. We denote the randomness taken by Ap explicitly
(as an additional argument) by =, and for some fixed randomness r and a

fixed input z, denote by €, ef Pr . [Ap(z,9,7) ¢ f71(f(x)) x {g}]-

g
We showl that the algorithm B inverts y = f(2), where 2/ < {0,1}"
uniformly at random, with probability at least ¢/n~9.

3 In similar manner to [6] and [2].
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Algorithm B(y) // On input y € {0,1}"

(a) Choose z uniformly at random from {0,1}".

(b) Choose randomness r for Ap uniformly at random.

(c) Choose g uniformly at random subject to g(f(x)) = g(y).
(d) Output ¢1(Ap(z,g,7)).

It holds that

eer= Y. Pr[¢i(Ap(x,g,7) € [ (y)] (11)
yAf(2) 979
= > Pr [pi(Ap(x,g,7) € W) [9(f (@) = g(y)]  (12)
yAf(2) 979
-ggrg[g(f(x)) =9(y)]
= Y Pr[i(Ar(z,g.n) € f7M (W) [ 9(f(2) = 9(y)]  (13)
yAf(2) 979

. 2—(n—r—dlog(n)) )

It follows that conditioned on the random choices X = z and R = r of the
algorithm B, we obtain that

Pr [B(f(z") € fTH(f(2)) | X =x AR=1]

x'<{0,1}n

= P By X s AR=1]
y<f({0,1}7)

> > PrlY =y
y#f (@)

> 27dlog(n) .

)

[01(Ap(z,9,7) € 7N (y) | 9(f(2)) = g(y)]

- Pr
g<G
(14)

As X and R are chosen uniformly at random, and by the fact that
¢ = Elex, r] we get that the algorithm inverts f with probability at least
n~¢ . e. Thus we have shown that Ar’s output on input (z,g) is limited to
Y f(x)) x {g}. By the regularity of f we have that its size is exactly 2.
Thus F has accessible max-preimage-entropy at most 7.

d

We next show that by a more careful analysis of the amplification results in an
almost-linear construction.

3.2 Amplifying the Entropy Gap and Converting Average to
Absolute Entropy Gaps

Lemma 3 (Fast gap amplification and real- to min- preimage-entropy conversion).
Let f and F be as in Lemmald, F* be the t-fold application of F and a(n) be any
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super-constant function. Then for t = a(n) -log(n), F' has a strong inaccessible
entropy gap of a(n) -log?(n). Moreover, the following entropy-gap holds:

1. Hp,min(Ft) > t('l" + 2d log(n))
2. H® (FY) <t-r.

p,max

Proof.

1. We first show that by the Markov inequality, the probability that the point-
wise entropy exceeds its expected value by more than a(n) - log(n) bits
is negligible. Specifically, from the first part of Lemma [2 we know that
the expected value of the preimage size of inputs to F is 27 +4d1og(n)  The
Markov inequality asserts that the probability we get an input with more
than 20()log(n) . gr+ddlog(n) preimages is at most 1/n°(M. Let us denote
this "bad’ event as A. By Lemma B we get that Eflog(rp(X,G))|A] >
r + 4dlog(n) — nt—M),

From now on we assume that this unlikely event does not happen. We
get that the value of the real entropy is limited to an interval of size
O(a(n) -log(n)), as we always have a at least r bits of point-wise entropy
due to the regularity of f.

Now we can apply the Hoeffding bound which asserts that for this case
a super-logarithmic number of repetitions suffice to bound from below the
min-preimage-entropy of the t-fold application of F'. Specifically, we get that

Pr log (7 ((z,9)")) = t(r + 2dlog(n))] < exp < ;2t > .
(2,9) < ({0,1}7 xG)t a*(n)

The choice of t = O(a®(n)-log(n)) ensures that this happens with probability
at most 1/n*").
2. This is just the t-fold accessible max-preimage-entropy we get by the second
part of Lemma 2l and Corollary [I1
]

Proof (Theorem [3). By Lemma B] F! already has the required strong type
of entropy gap between its accessible max-preimage-entropy and its real min-
preimage-entropy. Moreover, it tells us exactly where this gap is (there are at
most t -  bits of accessible max-preimage-entropy). Now, note that if a(n) is a
super-constant function, then so is o/(n) = a!/3(n). Finally, utilizing Theorem
M with parameter (F, ¢ - (r + 2dlog(n))) completes the construction and yields
a UOWHF with output length and key length O(n - log(n) - a(n)). O

* We use Lemma [§ in the uniform setting, where | = I(n) = n (as we consider the
point-wise Shannon entropy) and A, is an event that happens with some negligible
probability, that is, Pr[A,] < n™%(™ for some super-constant function a(n).
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4 UOWHF from a (27, 25(™)-Roughly-Regular OWF

The main theorem proved in this section is:

Theorem 3. Let f:{0,1}" — {0,1}™(") be a (27, 2°%)-roughly-regular one-way
function, where r = r(n) and s = s(n) are efficiently computable. Then there
exists an explicit construction of a UOWHF with output length and key length
of O(n - s%(n)) (resp., O(n - s*(n))) in the uniform (resp., non-uniform) model.

4.1 log(n)/s(n) Bits of Average Inaccessible Entropy

Haitner et. al. showed that for a general one-way function f, a random truncation
of a hashing of f(z) using a three-wise independent family of hash functions
yields an average entropy gap of £2(log(n)/n) entropy bits. We observe that a
modification of their first step achieves an average inaccessible entropy gap of
log(n)/s(n) bits from any (27("), 25("))_roughly-regular one-way function.

The idea is to divide the images f(z) (and respectively, the inputs x) into

buckets, such that every bucket contains images with roughly the same number

of preimages. We set m e s(n)/dlog(n) and J e {joy--+,Jm—1}, where j; e

n —r(n) — s(n) + (i — 1)dlog(n), and show that truncating the output of the
application of a three-wise independent hashing of f(x) to a random length from

J yields a function with the required gap. Recall that Hyx)(f(x)) € (ji, Jit1]

if and only if ms(x) € [27+s—Udlos(n)) gr+s—(i—1)(dlog(n)) Tet us denote g def

Pr[Hyx)(f(z)) € (ji,jir1]]- By the roughly-regularity assumption on f, it holds
that >" | ¢; = 1.Now we set G def G, a family of three-wise independent hash

functions, X f {0,1}" and define F': X xGx J - X x G x J as F(z,g9,j) =

(g(f(z))1,....4110m=7 g, 5), where we denote the domain and range of F' by Z def

Lemma 4. The function F as defined above has an average preimage-entropy
gap of s(n)/log(n) bits.

Proof. Recall that our goal in this step is to achieve an average inaccessible
entropy gap of 2(log(n)/s(n)) bits. That is, we need to show that for each
z = (x,9,7:) there exists a set S,, such that: (1) any efficient collision-finder
outputs an element of S, (except for an event that happens with negligible
probability) and (2) E_. _[log(7r(2)) — log(]S.|)] > £2(log(n)/s(n)).

In a similar manner to the regular case, the set of inputs accessible by an
efficient algorithm is limited only to those with relatively few images, where
"few” corresponds to the length of the random truncation. Essentially, we show
that when we hash to length j;, any preimages an efficient algorithm finds are
either already preimages of f(xz) (we refer to these as ’trivial’ collisions) B or stem
from some non-trivial collision, that is F'(z’, g, j;) = F(z, g, j;) but f(x) # f(z').

® Note that the definition of a one-way function does not rule out the possibility that
given a preimage it is difficult to compute other preimages from f~*(f(x)).
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For the latter, we further distinguish between those x that have significantly
fewer preimages than expected for a random function with output length j;,
and the rest. More precisely, we consider those preimages z’ = (2/,g,7;) for
which ¢ (2') < 27+2 and call these "j;o-light’ preimages of f(z). The remaining
"heavy’ collisions stem from inputs 2’ for which 7s(z’) > 27i+2.

We define:
def

T, = T(z,g,ji) = f_l(f(x)) X {g} X {]}7

def

L. = Liggg) = {2 € {0,1}" [ g(f(2)1,...5. = 9(f (&)1, js

1
A Hyx)(f(@) > jiga Az ¢ F7H(f(2)} x {g} x {5}

and

H. < Hy g = {2 € {0,13"g(f (@)1, i = 9(F (@1,

A Hpoxy(f(x) < jiga N2’ & F7H(F(2)} x {g} x {5},

where T, L and H stand for ’trivial’, ’light’ and "heavy’, respectively. It follows
that for every z,

FYF(z))=T.UL,UH, , (15)

where the union is over disjoint sets.

The rest of the proof is involved with proving that indeed the only accessible
sets to any efficient algorithm are 7T, U L, and that they constitute a large
fraction of the preimage set F~1(F(z)). The analysis follows the construction
from [3] and is brought for completeness in Appendix [Bl O

4.2 Faster Amplification of the Inaccessible Entropy Gap of F

Our goal in this section is to amplify the entropy gap of F' from the previous sec-
tion. We show how to construct a function F’ with w(log(n)) bits of inaccessible
entropy with an absolute type of gap.

Haitner et. al. [2] assert that independent repetitions of F' achieve both these
goals. They show that O(n?) repetitions are enough for getting this gap from
an arbitrary one-way function. We are able to utilize the information about the
underlying f (and in turn, that of F') and get a faster convergence, using the
roughly-regularity assumption.

Set A X (¢ -log(n)/s(n)) as the entropy gap of I, where c is the constant
corresponding to the {2 notation, and fix k, such that F' has preimage-entropy
H,(F) = k + A. Lemma M asserts that H¢T (F) < k. Using @) and

p,avg—max

Corollary Ml we know that for the ¢-fold parallel repetition of F it holds that

Hy(F') =t-(k+4), (16)
HeT (F'Yy<t-k . (17)

p,avg—max

IN

Thus for F! we obtain an average entropy gap of ¢ - A bits.
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Using the analysis of Lemma M and Lemma [l we get that for an input 2t =
(21,...,2t) to F', the only accessible inputs to F* are those that are contained
inS, = (T,, UL,,) x---x (T,, UL,,), and that the set of preimages of 2! is
just Ft_l(Ft(zt)) =T, UL, UH,) x -+ x (T,, UL,, UH,,), except for an
event B; that occurs with negligible probability. Next, we would like to apply
the Hoeffding bound to get the required gap. Similarly to Lemma [ we show
that although for some inputs the preimage size of F' may be very large (a priori
there may be inputs with up to 2" preimages, but not more, since F(x,g, j;)
determines (g, j;) uniquely as part of its output), this is not likely. First observe
that log(nr(z)) € [r,n] for all z. This is due to the fact that every image of
f(x) has at least 27(") preimages. We show that we can bound this also from
above: except with negligible probability we have that for any super-constant
function a(n): log(|T, UL,|) <log(rr(z)) < r(n)+ s(n) + dlog(n) + a(n) log(n)
. Consider 7p(Z) for a uniformly chosen random input Z = (X, G, J). This
value is maximized for J = jy because of the inclusion ¢ (F~1(F(z,g,j.))) C
¢1(F~Y(F(z,g,ji))) for ji < jl. It follows that in order to bound E[rr(X, G, J)]
it is sufficient to bound E[rp (X, G, jo)]-

As in Lemma [P using the three-wise independence of G, and the roughly-
regularity of f we have that for fixed z it holds that:

E [T"F(Z‘,g,jo)] < 27"(n)+s(n)+dlog(n)+2 ]

g+G

Next, fix any super-constant function «(n). Markov’s inequality asserts that

Pr [WF(HC,QJ'O) > 2r(n)+s(n)+dlog(n) _Qa(n) log(n)} < n—a(n) )
9<G

Denote the event that this happens in any of the repetitions by Bs and note that
it happens only with negligible probability (as ¢ is polynomial in n and using
the union bound). We summarize this as follows: whenever Bs does not occur,
we get that

r(n) <log(|Tz U Lz|) <log(np(Z)) < r(n) + s(n) + (d + a(n))log(n) .

When this is the case, both quantities are within an interval of size s’ def 3.
max {s(n), a(n) - log(n)}.

By Lemma [l we know that the preimage-entropy and the average accessi-
ble max-preimage-entropy values change by at most a negligible quantity when
ignoring an event of negligible probability. Specifically, we get that whenever
Bj A B happen we have:

K B [log(|S.)) | BiA By < E [log(IS.])] + negl(n)  (18)

&£ Z 22

T

and

K EZ log(mr(2))| Bi A B2] > EZ [log(mr(2))] — negl(n) (19)

T

with a gap of A g k> A— negl(n).



UOWHFs from OWFs: Trading Regularity for Efficiency 249

The Hoeffding bound yields that setting ¢ ef O(S'QEZg)&f)(")) assures that the

inaccuracies due to the sampling of the independent inputs to F are already
smaller than the accumulated gap. Specifically:

Pr [log(\Szt\)>t K+ )+ V/t-aln) - log( )] < pma) (20)
2t Zt
Pr [log (mpe(2Y)) < t-(K'+A4")) n)-/t - a(n) - log( )] < n~m (21)
2tz

Plugging ([I8) and (I3)) we get that except with negligible probability there is an
absolute entropy gap of at least

t-A—t-negl(n) — ) -/t a(n) -log(n) € w(log(n)) . (22)

4.3 A UOWHTF in the Non-uniform Model

To finish the construction we would like to apply the first part of Theorem[Il We
use the preimage-entropy of F' from Section Bl (in the form of a non-uniform

advice), which equals k + A. By what we have shown in Section it holds

that F'* has real min-preimage-entropy of at least Lefy. (k+4)—¢-5(n)-

\/ t - a(n) - log(n) bits. Additionally, it enjoys the required absolute entropy gap.
The first part of Theorem [ with parameters (F*,7) yields a UOWHF with
output length and key length O(n - s'*(n) - s2(n)/ log(n)).

4.4 An Efficient Non-uniform to Uniform Reduction

As explained, the construction obtained requires a non-uniform advice (i.e., the
Shannon preimage-entropy of f). We remove the non-uniformity by ’trying all
possibilities’. However, as opposed to the case of a general one-way function,
where we need to try O(n?) different values, we show that using the roughness
regularity assumption we only need O(s?(n)) tries.

Recall that by the roughly-regularity assumption on f, it follows that the
preimage-entropy of F lies in the interval [r 4+ dlog(n), s —|— dlog(n)].

For i € [[4-s(n)/clog(n)]] set k; f r+dlog(n)+i- . s(n) It holds that one of
the k; is within an additive distance of A from the real value k+ A. Accordingly,
set 7; ¢ (ki+A)— n) -/t - a(n)-log(n). It follows that for the same i,
(Fy, 7;) satisfies the premlse of the first part of Theorem [I and thus the second

part of the theorem yields a construction of a UOWHEF with output length of
O(n - '*(n) - s*(n)/log®(n)) and key length of O(n - '*(n) - s*(n)/ log?(n)).
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5 Conclusions

We demonstrated how to obtain more efficient constructions of a UOWHF from
different assumptions on the structure of the underlying OWF. For the case
of known regularity the resulting construction is very efficient and makes an
almost logarithmic number of calls to the underlying OWF. In the case when
the underlying OWF is known to be either 2" -regular or 2"2-regular (i.e., the
construction is given r; and ro and should be secure when instantiated with
any function of the corresponding regularity), we observe that one obtains a
construction that makes O(n) calls (combining our construction for the regular
case with the second part of Theorem [I)). Of course, the main open problem
remains to further improve the construction of Haitner et. al. for a general OWF.

Acknowledgments. We would like to thank the anonymous reviewers for their
helpful comments. The first author would like to thank David Adjiashvili and
Sandro Coretti for their comments on an earlier version of this work.
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A Further Preliminaries

A.1 The Hoeffding Bound
For independent bounded random variables X7, ..., X;, where X; € [a;, b;], set

Sy = X!, X;, then:

—2k2
_ >kl <9. .
Pr[|S: —E[S:]| > k] < 2-exp (Efl(bi - ai)z)
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A.2 t-wise Independent Hashing

Let G def {gr : {0,1}" — {0,1}™}rek be a family of keyed functions. G is
t-wise independent if for all yq,...,y € {0,1}™ and all distinct x1,...,2; €
{0,1}™ it holds that

Pr lgr(z1) = g1 A= Agrl(ay) =y =270
k<K
The family is called constructible if, for all y1,...,ys and distinct x1,...,xs

where s < t, it is possible to sample a function uniformly subject to gx(z1) =
Yis-- - 9K (Ts) = Ys.

It is well-known that if G} is a ¢-wise independent family, then by truncating
the last n — [ bits of G" one gets a t-wise independent family G!. Moreover, if
Gy is constructible, then so is Qfl.

The next lemma shows that ignoring an unlikely event of a random variable
that takes a value in some limited range, does not change much its expected
value. The standard proof is omitted in this extended abstract.

Lemma 5. Let X be a random variable with Supp(X) C [0,1] and A an event
that happens with probability at most €. Then:

EX]-E[X|A]| <21 €. (23)

B Proof of Lemma (4, continued.

Our next goal is to show that the sets {T, U L,}.cz satisfy the needed require-
ments. Claim 4.9 in [2] shows that any efficient collision-finder cannot (except
with negligible probability) output a preimage of F(z) in H,, as such an al-
gorithm can be used to invert f. Specifically, they show (again, using the con-
structibility of the three-wise independent hash family as in the second part of
Lemma [2) how to efficiently convert any F-collision-finder that outputs a preim-
age from H, with probability ¢ to one that inverts a random input of f with
probability e/n¢.

As the preimage sets {H,}.cz are inaccessible, it remains to show that they
constitute a noticeable part of the preimage sets. In order to complete the proof,
we need to bound:

I ez
E [rr(z)] - E log(T.UL.) = B 1og( r(2) )} (24)
2Lz 2Lz 2Lz L |TZ ULZ‘
‘ |Tz|+Lz|+Hzﬂ
B T2 + || (
‘ .| ﬂ
= E |log (1+ 26)
B T+ |Ls| (

Y

| H.| }
E 27)
22@2[Tz+|Lz+|HZ| (
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where the second equality is due to the partition in (IH) and the inequality uses
the fact that log(1l 4+ x) > x/2 for « € [0,1). Thus, it is left to show that indeed
|H.| constitutes a noticeable part of 7p(2).

Proposition 1. Conditioned on X = x and J = j;, define the events:

Bl {|H.] +|L.| <3277}

E2 def {H ‘ > (QZ_4 \/1/nd) on— ]1—1}

Then Pr [Ej]>2/3 and Pr [ 2] > 3/4 hold.

g<G

This is just Claim 4.11 from [2] [. It follows that:

= E [log(nr(2))]— E [log(|T. U L,|)] (28)
2 Z 2z
1 |H.| }
=, E 29
‘22@2{T+L+|HZ| (29)
; |H.| }
1 m—1
> > Pr[Hpo(f(X) > ji]-
2m iz
E |H.| o . \
22 LT+ |L.| + |5 10 (f(X)) > jis J = Ji (31)
4 z z z
m—1
1 1
> .. m) - (1— - — .
E | E} E? . H X)) > i, J = | (32
oz LT+ |L2| + |H| Fe0 (f(X) > gi, J = ji| (32)
1= 1 1. (1 — 4/(n#/2)) - 2n—di—1
; 2m = (@t gm) - (1~ 3 4). on—ji+2 (33)
1=
5 1 1
Z gm0 @) =O( (34)
<i<k<m-—1
> o0~ Megln) —O(m=?) (35)

where we used conditional expectations, the union bound, the fact that
Hyx)(f(x)) > ji is equivalent to |T:| < 277 and the roughness-regularity
assumption that Y .~ ¢; = 1 — negl(n).

5 We use it with o = 4 and note that Heavy = |H.| and Light = |L.|.
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We conclude that the log-size of the set of the accessible inputs to an efficient
collision-finder is, on average, bounded away from the point-wise entropy. Put
differently, we get a noticeable fraction of 2(1/m) = §2(log(n)/s(n)) average
inaccessible entropy bits.



	UOWHFs from OWFs: Trading Regularity for Efficiency
	Introduction
	Constructions of Cryptographic Primitives
	Contributions of This Paper
	Related Work

	Preliminaries
	Notations and Basics
	OWF and UOWHF
	Entropy Measures
	Collision Finders and Accessible Entropy
	Entropy Measures for t-fold Parallel Repetitions
	An Overview of the Construction of Haitner et. al.

	UOWHF from a 2r-Regular OWF
	Inaccessible Entropy from 2r-Regular One-Way Functions
	Amplifying the Entropy Gap and Converting Average to Absolute Entropy Gaps

	UOWHF from a (2r(n),2s(n))-Roughly-Regular OWF
	log(n)/s(n) Bits of Average Inaccessible Entropy
	Faster Amplification of the Inaccessible Entropy Gap of F
	A UOWHF in the Non-uniform Model
	An Efficient Non-uniform to Uniform Reduction

	Conclusions
	References




